Total number of printed pages-8

3 (Sem-5/CBCS) MAT HC 1

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-5016

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10=10$
 - (a) Describe an open ball in the discrete metric space.
 - (b) Find the derived set of the sets (0,1] and [0,1].
 - (c) A subset B of a metric space (X, d) is open if and only if
 - (i) $B = \overline{B}$
 - (ii) $B = B^{o}$
 - (iii) $B \neq \overline{B}$
 - (iv) $B \neq B^{\circ}$

(Choose the correct one)

Contd.

(d) Which of the following is false?

(i)
$$\phi^o = \phi$$
, $X^o = X$

(ii)
$$A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$$

(iii)
$$(A \cap B)^o = A^o \cap B^o$$

(iv)
$$(A \cup B)^o = A^o \cup B^o$$

where A, B are subsets of a metric space (X, d). (Choose the false one)

(e) The closure of the subset

$$F = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$$
 of the real line \mathbb{R} is

- (i) ϕ
- (ii) F
- (iii) F∪{0}
 - (iv) $F-\{0\}$

(Choose the correct one)

(f) In a metric space an arbitrary union of closed sets need not be closed.

Justify it with an example.

(g) If A is a subset of a metric space
$$(X, d)$$
, then which one is true?

(i)
$$d(A) = d(\overline{A})$$

(ii)
$$d(A) \neq d(\overline{A})$$

(iii)
$$d(A) > d(\overline{A})$$

(iv)
$$d(A) < d(\overline{A})$$

(Choose the true one)

- (h) When is an improper Riemann integral said to be convergent?
- (i) Evaluate $\int_{0}^{\infty} e^{-x} dx$ if it exists
- (j) Show that $\Gamma(1)=1$
- 2. Answer the following questions: 2×5=10
 - (a) Let F be a subset of a metric space (X, d). Prove that the set of limit points of F is a closed subset of (X, d).
 - (b) If F_1 and F_2 are two subsets of a metric space (X, d), then $\overline{F_1 \cap F_2} = \overline{F_1} \cap \overline{F_2}$. Justify whether it is false or true.

- (c) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$. If for all subsets A of X, $f(\overline{A}) \subseteq \overline{f(A)}$, then show that f is continuous on X.
 - (d) Let $f:[a,b] \to \mathbb{R}$ be integrable. Show that |f| is integrable.
 - (e) Show that the function $f:[a,b] \to \mathbb{R}$ defined by f(x)=c for all $x \in [a,b]$ is integrable with its integral c(b-a).
- 3. Answer any four parts: 5×4=20
 - (a) Define a complete metric space. Show that the metric space $X = \mathbb{R}^n$ with the metric given by

$$d_p(x,y) = \left(\sum |x_i - y_i|^p\right)^{\frac{1}{p}}, p \ge 1$$

where $x = (x_1, x_2, ..., x_n)$ and

 $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n , is a complete metric space. 1+4=5

- (b) Let (X, d_X) and (Y, d_Y) be metric spaces. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y.
- (c) Prove that if the metric space (X, d) is disconnected, then there exists a continuous mapping of (X, d) onto the discrete two-element space (X_0, d_0) .
- (d) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Prove that f is integrable.
- (e) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values of p.
- (f) Show that for a > -1, $S_n = \frac{1^n + 2^n + \dots + n^n}{n^{1+a}} \to \frac{1}{1+a}.$ 5

- 4. Answer any four parts:
 - (a) (i) Let (X, d) be a metric space. Define $d: X \times X \to \mathbb{R}$ by $d'(x,y) = \frac{d(x,y)}{1+d(x,y)} \text{ for all }$

 $x, y \in X$. Prove that d' is a metric on X.

Also show that d and d' are equivalent metrices on X.

4+2=6

- (ii) Prove that a convergent sequence in a metric space is a Cauchy sequence.
- (b) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open.
 - (ii) If (Y, d_Y) is a subspace of a metric space (X, d), then show that a subset Z of Y is open in Y if and only if there exists an open set $G \subseteq X$ such that $Z = G \cap Y$.

- (c) Prove that a metric space (X,d) is complete if and only if for every nested sequence $\{F_n\}_{n\geq 1}$ of non-empty closed subsets of X such that $d(F_n) \to 0$ as
 - $n \to \infty$, the intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point.
- (d) (i) Prove that in a metric space (X, d), each open ball is an open set.
 - (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
- (e) (i) Define uniformly continuous mapping in a metric space. Give an example to show that a continuous mapping need not be uniformly continuous. 1+4=5

- (ii) Prove that the image of a Cauchy sequence under a uniformly continuous mapping is itself a Cauchy sequence.
- (f) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subseteq \mathbb{R}$ is connected if and only if I is an interval.
- (g) Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Show that f is integrable if and only if it is Riemann integrable.
- (h) (i) State and prove first fundamental theorem of calculus. Using it show that

$$\int_{0}^{a} f(x)dx = \frac{a^{4}}{4} \text{ for } f(x) = x^{3}.$$

1+3+2=6

(ii) Let f be continuous on [a, b]. Prove that there exists $c \in [a, b]$

such that
$$\frac{1}{b-a}\int_{a}^{b}f(x)dx = f(c)$$
.

4

3 (Sem-5 /CBCS) MAT HC 2

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×10=10
 - (i) Is $\mathbb{R}^2(\mathbb{R})$ is a subspace of $\mathbb{R}^3(\mathbb{R})$?
 - (ii) Let A be a 5×4 matrix. If null space of A is a subspace of \mathbb{R}^k then what is k?
 - (iii) Let S be a subset of a vector space V(F) and S contains zero vector of V. Then S is
 - (A) linearly independent
 - (B) linearly dependent

- (C) Both linearly independent and linearly dependent
- (D) None of the above (Choose the correct option)
- (iv) Write the standard basis of the vector space of polynomial in x with real coefficient of degree ≤ 3 .
- (v) "The eigenvalues of a triangular matrix are the entries on its main diagonal." (State True or False)
- (vi) Define inner product on \mathbb{R}^n .
- (vii) Which vector is orthogonal to every vector in \mathbb{R}^n ?
- (viii) How do you explain $\dim W = 1$ geometrically where W is a subspace of the vector space $\mathbb{R}^3(\mathbb{R})$?

(ix) Let A be the 4×4 real matrix,

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & -2 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$

Then the characteristic polynomial for A is

(A)
$$x^2(x-1)^2$$

(B)
$$(x-1)^2(x+1)^2$$

(C)
$$x^2(x+1)^2$$

- (D) None of the above

 (Choose the correct option)
- (x) What do you mean by the length of a vector in \mathbb{R}^n ?
- 2. Answer the following questions: 2×5=10
 - (i) Let V be the vector space of all functions from the real field \mathbb{R} to \mathbb{R} . Show that $W = \{f : f(7) = 2 + f(1)\}$ is not a subspace of V.
 - (ii) Show that every subset of an independent set is independent.

(iii) Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Is v a eigenvector of A ?

- (iv) Let T be the linear operator on \mathbb{R}^3 defined by T(a,b,c) = (a+b,b+c,0). Show that the xy-plane = $\{(x,y,0): x,y \in \mathbb{R}\}$ is T-invariant subspace of \mathbb{R}^3 .
- (v) Let $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of y onto u.
- 3. Answer any four questions: 5×4=20
 - (i) Prove that the non-zero vectors $v_1, v_2, ..., v_n$ are linearly dependent if and only if one of them is a linear combination of the preceding vectors.
 - (ii) Let $v_1, v_2, ..., v_n$ be non-zero eigenvectors of an operator $T: V \to V$ corresponding to distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Prove that $v_1, v_2, ..., v_n$ are linearly independent.

(iii) Let A and B be two similar matrices of order $n \times n$. Prove that A and B have same characteristic polynomial and hence the same eigenvalues.

(iv) Let
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$$
. An eigenvalue of

A is 2. Find a basis for the corresponding eigenspace.

(v) Let
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
. Find a formula for A^2 , given that $A = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.

(vi) Define orthogonal set. If $S = \{u_1, u_2, ..., u_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n , then prove that S is linearly independent and hence is a basis for the subspace spanned by S.

Section 19 Acres

4. (i) If a vector space V has a basis $B = \{v_1, v_2,, v_n\}$, then prove that any set in V containing more than n vectors must be linearly dependent. Also show that every basis of V must consist of exactly n vectors. 5+5=10

OR

Let U and V be vector spaces over the same field. Let $\{u_1, u_2, \ldots, u_n\}$ be a basis of U and let v_1, v_2, \ldots, v_n be any arbitrary vectors in V. Prove that there exists a unique linear mapping $f: U \to V$ such that

$$f(u_1) = v_1$$
, $f(u_2) = v_2$, ..., $f(u_n) = v_n$ 10

(ii) Find the eigenvalues and eigenvectors

of
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
.

OR

State Cayley-Hamilton theorem for matrices. Use it to express $2A^5 - 3A^4 - A^2 - 4I$ as a linear

polynomial in A, when
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
.

- (iii) Let T be the linear operator on \mathbb{R}^3 , defined by T(x,y,z) = (2y+z, x-4y, 3x)
 - (a) Find the matrix of T in the basis $\{e_1 = (1,1,1), e_2 = (1,1,0), e_3 = (1,0,0)\}$
 - (b) Verify that $[T]_e[v]_e = [T(v)]_e$ for 4+6=10 any vector $v \in \mathbb{R}^3$.

OR

- An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigen-vectors.
 - orthonormal set (iv) Define orthonormal basis in \mathbb{R}^n . Show that $\{u_1, u_2, u_3\}$ is an orthonormal basis of \mathbb{R}^3 , where

$$u_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \quad u_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \quad u_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

$$1+1+8=10$$

Define inner product space. Show that the following is an inner product in \mathbb{R}^2 :

$$\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

where
$$u = (x_1, x_2), v = (y_1, y_2).$$

Also show that for all u, v in \mathbb{R}^2

$$||u+v|| \le ||u|| + ||v||$$