# 3 (Sem-5/CBCS) CHE HE 1/2/3

### 2021

(Held in 2022)

### **CHEMISTRY**

(Honours Elective)

# Answer the Questions from any one Option.

## OPTION - A

Paper: CHE-HE-5016

## DSE(H)-1

# (Applications of Computers in Chemistry)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

1. Answer all questions:

 $1 \times 7 = 7$ 

- (a) What is a variable?
- (b) Convert the number 223 to a binary number.
- (c) What is the full form of ASCII?

Contd.

- (d) Define debugging.
- (e) What is logical operator?
- (f) What is a string?
- (g) What is extrapolation?
- 2. Answer all questions: 2×4=8
  - (a) What are the differences between compiled and interpreted languages?
  - (b) What is the use of END statement in a BASIC program?
  - (c) Find the two errors in the following program:
    - 10 FOR X = 36 TO 34 STEP 2
    - 20 PRINT X
      30 NEXT Y
    - 40 END

- (d) Write BASIC statements to -
  - (i) print square root of a number
  - (ii) print absolute value of a number
- 3. Answer any three of the following questions: 5×3=15
  - (a) What do you mean by computer programming? Write a BASIC program to print positive even numbers upto 200.
  - (b) Write short notes on the following:
    - (i) IF statement
    - (ii) REM and LET statement
  - (c) Write a BASIC program to calculate the pH of a weak acid.
  - (d) Write a BASIC program to perform matrix addition.

- (e) Write a BASIC program to find the numerical value of the definite integral.
- 4. Answer **any three** of the following questions: 10×3=30
  - (a) Explain Regula-Falsi method for finding roots of a real-valued function.
  - (b) Write a BASIC program to compute the roots of a system of linear equations using Gauss-Seidel method.
  - (c) The vapour pressures of liquid acetonitrile  $CH_3CN$  at three different temperatures is

|                    | · · · · · · · · · · · · · · · · · · · |
|--------------------|---------------------------------------|
| $T_i({}^{\circ}K)$ | $P_{i}s(mm Hg)$                       |
| 268.15             | 20                                    |
| 289.05             | 60                                    |
| 300.15             | 100                                   |
|                    | 268.15<br>289.05                      |

Estimate the vapour pressure at 280.15K using

- (i) linear interpolation and
- (ii) quadratic interpolation

- (d) Write a basic program to compute rate constant of zero-order reaction.
- (e) Explain the application of spreadsheet to estimate the following: (any two)
  - (i) Empirical and molecular formula
  - (ii) Molecular weight
  - (iii) Vapour pressure
- (f) Explain in detail the importance of spreadsheet in statistical analysis of data and data processing with an example.

### **OPTION - B**

Paper: CHE-HE-5026

# (Analytical Method in Chemistry)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions:  $1 \times 7 = 7$ 
  - (a) What is the relation between transmittance and absorbance?
  - (b) What is the difference between accuracy and precision?
  - (c) What is meant by distribution ratio in chromatography?
  - (d) What is the elution order of reverse phase liquid chromatography?
  - (e) In Atomic Absorption Spectroscopy, which of the following is generally used as radiation source?
    - (i) Tungsten lamp
    - (ii) Xenon mercury arc lamp

- (iii) Hydrogen or deuterium discharge lamp
- (iv) Hollow cathode lamp
- (f) Why is IR spectra obtained from different sample preparation methods for the same sample looks slightly different from each other?
- (g) Cis-stilbene absorbs at lower wavelength than trans-stilbene in the UV-visible region of the electromagnetic spectrum. Why?
- 2. Answer the following questions: 2×4=8
  - (a) Vibrational frequency of HF molecule is found at 845 cm<sup>-1</sup>. If the hydrogen atom of this molecule is substituted with deuterium, what will be the vibrational frequency of the molecule?
  - (b) What are the factors that determine the mobility of a sample in thin-layer chromatography?
  - (c) How are different chormatographic techniques classified based on the mobile phase? Give one example of each class.

| (d) | What is the function of the |  |  |  |  |
|-----|-----------------------------|--|--|--|--|
|     | monochromator in a          |  |  |  |  |
| •   | spectrophotometer?          |  |  |  |  |

- 3. Answer **any three** of the following questions:  $5\times3=15$ 
  - (a) What are the different mechanisms used in solvent extraction? What is a chelating reagent? Discuss its role in solvent extraction by considering a suitable example. 2+1+2=5
  - (b) What is a chiral shift reagent? Discuss its role in NMR spectroscopy with a suitable example. 1+4=5
  - (c) What is the basic principle of atomic absorption spectroscopy? What are the different atomization processes commonly employed in the atomic absorption spectroscopy (AAS)?

    3+2=5
  - (d) Explain with a suitable example, how pKa values of an indicator can be determined by UV-visible spectroscopy.
  - (e) How does a silicone photodiode detector work?

5

| T. 1111 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ~··• | 0.0.00 | O. | CIIC | following |      |
|---------|-----------------------------------------|------|--------|----|------|-----------|------|
|         | stion                                   |      |        | ,  |      | 10×3      | 3=30 |

- (a) (i) Discuss the principle used in 5 HPLC.
  - What are the factors (ii) influence extraction efficiency in solvent extraction?
  - (iii) A sample of mandelic acid analysed in a polarimeter gave an observed specific rotation of -75 degrees. If the specific rotation of (S)-mandelic acid is +154 degrees, then answer the following:
    - (A) Which enantiomer (R or S) is in excess?
    - Calculate the enantiomeric excess of the mixture.
    - (C) Calculate the percentage of each enantiomer in the mixture.

- (b) (i) A mixture of CaCO<sub>3</sub> and CaO is analysed using TGA technique. TG curve of the sample indicates that there is a mass change from 145.3mg to 115.4 mg between 500-900°C. Calculate the percentage of CaCO<sub>3</sub> in the sample.
  - (ii) Calculate the percentage mass change (m%) for the following reactions:

 $CuSO_4 \xrightarrow{\text{Heat}} CuO + SO_3$ 

- (iii) Discuss the factors on which conductance of an electrolytic solution depends.
- (c) (i) Discuss with an example, how the strength of an acid can be determined by pH metric titration against a standard base.
  - (ii) Discuss the principle of colorimetric analysis for determination of concentration of an unknown solution.

|       | (d)   | (i)   | Define systematic and random errors. How can we reduce systematic errors? 2+3=5                                                                     |
|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|       | •     | (ii)  | Discuss the principle of ion exchange chromatography. 5                                                                                             |
|       | (e)   | (i)   | Analysis of a sample of iron ore gave the following percentage values for the iron content:                                                         |
| 7.08, | 7.21, | 7.12, | 7.09, 7.16, 7.14, 7.07, 7.14, 7.18, 7.11                                                                                                            |
|       |       |       | Calculate the mean, standard deviation and coefficient of variation for the values. 1+2+2=5                                                         |
|       | •     | (ii)  | What is the fingerprint region in IR spectroscopy? Why is it called so? Why is it important? 1+1+1=3                                                |
|       |       | (iii) | What are the limitations of Beer-<br>Lambert's law? 2                                                                                               |
|       | (f)   | (i)   | Discuss the principle of conductometric titration for the determination of equivalence points of acid-base reaction.                                |
|       | •     | (ii)  | What are the key components of a thermal analysis system? Discuss an application of Thermogravimetric Analysis (TGA) with a suitable example. 2+3=5 |

### OPTION - C

Paper: CHE-HE-5036

# (Molecular Modelling and Drug Design)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

1. Answer the following questions:

 $1\times7=7$ 

- (a) What are different types of models used to describe a molecule?
- (b) What is a Z-matrix?
- (c) What do you mean by PES?
- (d) How is van der Waals surface constructed?
- (e) What are the conventional units of length and energy in molecular modelling?
- (f) How will you define a simple molecular mechanics force field?

- (g) Write the mathematical form of Morse potential.
- 2. Answer the following questions: 2×4=8
  - (a) Describe briefly the Börn-Oppenheimer approximation.
  - (b) What types of points on a PES are particularly relevant in understanding a chemical reaction?
  - (c) What are 'hard' degrees of freedom? Provide schematic illustration of the cross terms believed to be most important in force fields.
  - (d) What do you mean by H-bonding in molecular mechanics?
  - 3. Answer **any three** questions from the following:  $5\times 3=15$ 
    - (a) Discuss briefly different types of non-bonded interactions.
    - (b) What do you mean by computer hardware and software? Describe briefly with examples.
    - (c) Discuss briefly the solvent dielectric models.

- (g) Write the mathematical form of Morse potential.
- 2. Answer the following questions:  $2\times4=8$ 
  - (a) Describe briefly the Born-Oppenheimer approximation.
  - (b) What types of points on a PES are particularly relevant in understanding a chemical reaction?
  - (c) What are 'hard' degrees of freedom? Provide schematic illustration of the cross terms believed to be most important in force fields.
  - (d) What do you mean by H-bonding in molecular mechanics?
- 3. Answer **any three** questions from the following: 5×3=15
  - (a) Discuss briefly different types of non-bonded interactions.
  - (b) What do you mean by computer hardware and software? Describe briefly with examples.
  - (c) Discuss briefly the solvent dielectric models.

- (d) What do you mean by dispersive interactions? What are exchange forces?  $2\frac{1}{2}+2\frac{1}{2}$
- (e) Discuss briefly the simple water models used for the simulation of liquid water.
- 4. Answer **any three** questions from following: 10×3=30
  - (a) Give a typical expression for a molecular mechanics potential energy function of the type used for macromolecular simulations. Include intra- and intermolecular terms. Describe, what each energy term represents. Also state briefly the physical origin of each of the energy terms.
  - (b) Describe briefly the following methods for calculating molecular energies and geometries (outline their advantages and disadvantages).
    - (a) ab initio molecular orbital methods
    - (b) Semiempirical molecular orbital methods 5+5=10
  - (c) How are different thermodynamic properties calculated using a force field? Discuss briefly force field parametrisation technique. 5+5=10

- (d) Discuss briefly the simplex method and the sequential univariate method used for energy minimisation. 5+5=10
- (e) Discuss briefly the Monte Carlo method. State the differences between the MD and Monte Carlo method. 5+5=10
- (f) Discuss briefly the different steps involved in running a computer simulation.

## 3 (Sem-5/CBCS) CHE HE 4/HE 5/HE 6

### 2021

(Held in 2022)

#### **CHEMISTRY**

(Honours Elective)

# Answer the Questions from any one Option.

#### **OPTION-A**

Paper: CHE-HE-5046

(Novel Inorganic Solids)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×7=7
  - (a) The colour of gold nanoparticles is
    - (i) yellow
    - (ii) orange
    - (iii) red
    - (iv) variable

      (Choose the correct answer)

| (b) | Carbon | nanotubes     | are | also    | known   | as  |
|-----|--------|---------------|-----|---------|---------|-----|
|     |        | <del></del> • | (F  | filt in | the bla | nk) |

- (c) What is the basis of classification of composite materials?
- (d) Quartz is an acidic refractory.

  (State True or False)
- (e) What are fullerides?
- (f) Give an example of a magnetic material used in data storage devices.
- (g) What is solid electrolyte made of?
- 2. Answer the following questions: 2×4=8
  - (a) What are inorganic pigments? How are they different from organic pigments?
  - (b) What is the amount (%) of carbon in pure iron, cast iron and steel?
  - (c) What are superalloys? Mention two important applications of superalloy.
  - (d) Distinguish between natural and artificial nanoparticles.
- 3. Anwer any three questions:  $5\times3=15$ 
  - (a) What are solid-state electrolytes (SSEs)? In which batteries SSEs are used?

    3+2=5

- (b) Discuss a method for the synthesis of silver nanoparticles. What is the colour of silver nanoparticles? 4+1=5
- (c) What is the role of matrix in a composite material? Discuss the advantages of composite materials.

2+3=5

- (d) What are polymer matrix materials?

  Mention their important applications.

  Why are polymer matrix materials better than metals?

  1+2+2=5
- (e) Based on the composition, how are ceramic materials classified? Discuss each of them. 2+3=5
- 4. Answer **any three** of the following questions: 10×3=30
  - (a) (i) Discuss the top-down and bottomup approach in nanomaterial synthesis. 2½+2½=5
    - (ii) What is the molecular structure of carbon nanotubes? What are their uses in carbon nanotechnology? 3+2=5
  - (b) Write notes on the following:  $2\frac{1}{2} \times 4 = 10$ .
    - (i) Hydrothermal synthesis
    - (ii) Thermoplastics

- (iii) Molecular magnets
- (iv) Green synthesis of nanoparticles
- (c) (i) Discuss the effects of environmental factors on composite materials.
  - (ii) What are fibre-reinforced composites? Discuss their applications. 2+3=5
- (d) What are alloying elements? Discuss the various types of aluminium alloys and their uses. 2+8=10
- (e) What is DNA nanotechnology? Write a brief note on biological applications of DNA nanomaterials. 3+7=10
- (f) Discuss the various methods used in the synthesis of inorganic solids. 10

### OPTION-B

Paper: CHE-HE-5056

(Polymer Chemistry)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed:  $1\times7=7$ 
  - (a) What do you mean by degree of polymerization?
  - (b) What is an inorganic polymer?
  - (c) Arrange the following polymers in increasing order of intermolecular forces:

Buna-S, Polythene, Nylon 6,6

- (d) What is super fibre?
- (e) Which of the following natural products is not a polymer?
  - (i) DNA
  - (ii) Cellulose
  - (iii) ATP
  - (iv) Urease

(Choose the correct answer)

- (f) Example of addition polymer is —
- (i) Buna-S
  - (ii) Bakelite (iii) Nylon-6
  - (iv) Dacron
- (g) Write the IUPAC name of

$$\begin{pmatrix} -CH_2 - CH - \\ | \\ OH \end{pmatrix}$$

- 2. Answer the following questions: 2×4=8(a) Draw the structure of the monomers of the following polymers
  - (i) Teflon
    (ii) Polythene
  - (b) What is Ziegler-Natta catalysts?(c) Describe the classification of polymers
  - on the basis of structure. Give examples.
  - (d) Define the term 'oriented polymers'.
  - questions: 5×3=15

    (a) (i) 'All polymers are macromolecules but all macromolecules are not

Answer any three of the following

polymers' — Justify the statement.

- (ii) Write the importance of plasticizer in polymer chemistry with an example.
- (b) Identify A-E in the following polymeric reactions:

(ii) 
$$H_2C=C-C=CH_2+OCH_3$$

A

 $HC=CH_2$ 

Na / $\Delta$ 

(iii)  $H_2C=C-C=CH_2+OCH_3$ 

Benzoyl peroxide

 $C$ 

(iv) 
$$OH$$
 +  $CH_2O$  Base  $o-D+p-D$ 
(v)  $O-D$  polymerisation  $E$ 

- (c) Briefly discuss the preparation, properties and uses of the following polymers: 2.5×2=5
  - (i) Polyamides
  - (ii) Polyvinyl chloride (PVC)

- (d) Write short note on thermodynamics of polymer solutions. What are two main factors which helps crystallization of polymers?

  3+2=5
- (e) Differentiate between copolymerization and homopolymerization. Give one example of each. What is graft and block copolymer? 2+1+2=5
- 4. Answer **any three** of the following questions: 10×3=30
  - (a) What are natural and synthetic polymer. Give examples. How do you explain the functionality of a monomer and how does it affect the polymer formation? Give an account of synthetic criteria of polymer formation.

    3+4+3=10
  - (b) What are the basic differences between addition and condensation polymer? How will you distinguish between free radical and ionic polymerization? Write the free radical mechanism for the polymerisation of ethene. 3+3+4=10
  - (c) Name any two initiators used in anionic polymerization. Describe the polymerization of 2,2-dimethyloxirane by an anionic and cationic mechanism. List the following groups of monomers in order of decreasing ability to undergo anionic polymerization. 2+3+3+2=10

- (ii) CH<sub>2</sub>=CHCH<sub>3</sub> CH<sub>2</sub>=CHCl CH<sub>2</sub>=CHCN
- (d) What is glass transition temperature  $(T_g)$ ? Discuss various factors affecting glass transition temperature. Which of the polymers in each pair is expected to have higher  $T_g$  and why?
  - (i) polyethylene and polypropylene
  - (ii) poly(but-l-ene) and poly(but-2-ene).
  - Write a short note on Conducting polymer. 1+3+3+3=10
- (e) Define living polymerization. Mention two benefits of living polymerization in general over conventional non-living polymerizations. Mention two techniques of living radical polymerization. Give an example of block co-polymer that is usually synthesized by living anionic polymerization. 2+3+3+2=10

taken as 'average'? Explain viscometry methods of determining molecular weight of polymers. Why is  $M_{\nu}$  measured by viscosity method not an absolute molecular weight? Explain the term Polydispersity index. 2+4+2+2=10

### OPTION-C

Paper: CHE-HE-5066

## (Instrumental Methods of Chemical Analysis)

Full Marks: 60

Time: Three hours

# The figures in the margin indicate full marks for the questions.

- 1. Answer **all** the questions as directed:  $1 \times 7 = 7$ 
  - (a) What is the source of visible light used in a modern UV-visible spectrophotometer?
  - (b) The reference compound use in <sup>1</sup>H-NMR spectroscopy is \_\_\_\_\_.

(Fill in the blank)

- (c) Which of the following is used as the source of radiation in atomic absorption spectroscopy?
  - (A) Tungsten lamp
  - (B) Xenon-mercury arc lamp
  - (C) Deuterium lamp
  - (D) Hollow cathode lamp (Choose the correct answer)

- (d) Which of the following statements is wrong?
  - (A) A mass spectrometer uses high energy UV radiation.
  - (B) A mass spectrometer does not use a spectrophotometric detector.
  - (C) Mass spectrometrý does not always require samples of high purity.
  - (D) A mass spectrum does not show signals due to uncharged radicals.

| (e)  | Column-1              | Column-2                      |  |  |
|------|-----------------------|-------------------------------|--|--|
| .* - | (a) Mass spectrometry | (i) Deuterium lamp            |  |  |
| •    | (b) NMR               | (ii) Michelson Interferometer |  |  |
|      | (c) FT-IR °           | (iii) Base peak               |  |  |
| •    | (d) UV-visible        | (iv) Chemical shift           |  |  |

Choose the correct option for the matching pairs from both the columns:

- (A) (a)  $\rightarrow$  (iii); (b)  $\rightarrow$  (iv); (c)  $\rightarrow$  (ii); (d)  $\rightarrow$  (i)
- (B) (a)  $\rightarrow$  (iii); (b)  $\rightarrow$  (i); (c)  $\rightarrow$  (iv); (d)  $\rightarrow$  (ii)
- (C) (a)  $\rightarrow$  (iv); (b)  $\rightarrow$  (iii); (c)  $\rightarrow$  (ii); (d)  $\rightarrow$  (i)
- (D) (a)  $\rightarrow$  (ii); (b)  $\rightarrow$  (iii); (c)  $\rightarrow$  (iv); (d)  $\rightarrow$  (i)

- (d) Which of the following statements is wrong?
  - (A) A mass spectrometer uses high energy UV radiation.
  - (B) A mass spectrometer does not use a spectrophotometric detector.
  - (C) Mass spectrometry does not always require samples of high purity.
  - (D) A mass spectrum does not show signals due to uncharged radicals.

| (e) | Column-1              | Column-2                      |  |  |
|-----|-----------------------|-------------------------------|--|--|
| •   | (a) Mass spectrometry | (i) Deuterium lamp            |  |  |
|     | (b) NMR               | (ii) Michelson Interferometer |  |  |
| ,   | (c) FT-IR °           | (iii) Base peak               |  |  |
|     | (d) UV-visible        | (iv) Chemical shift           |  |  |

Choose the correct option for the matching pairs from both the columns:

- (A) (a)  $\rightarrow$  (iii); (b)  $\rightarrow$  (iv); (c)  $\rightarrow$  (ii); (d)  $\rightarrow$  (i)
- (B) (a)  $\rightarrow$  (iii); (b)  $\rightarrow$  (i); (c)  $\rightarrow$  (iv); (d)  $\rightarrow$  (ii)
- (C) (a)  $\rightarrow$  (iv); (b)  $\rightarrow$  (iii); (c)  $\rightarrow$  (ii); (d)  $\rightarrow$  (i)
- (D) (a)  $\rightarrow$  (ii); (b)  $\rightarrow$  (iii); (c)  $\rightarrow$  (iv); (d)  $\rightarrow$  (i)

- (f) Which of the following statements is wrong?
  - (A) UV light absorption causes electronic transitions.
  - (B) UV spectra provide information about valence electrons.
  - (C) IR absorption causes transitions between rotational energy levels of a molecule.
  - (D) NMR spectrometers use radiofrequency electromagnetic radiation.
- (g) Consider the following instrumental methods:
  - (i) IR spectroscopy
  - (ii) UV-visible spectroscopy
  - (iii) Mass spectrometry
  - (iv) Chromatography

Which method(s) can give structural information regarding a molecule?

- (A) (i) and (ii)
- (B) (ii) and (iii)
- (C) (i), (ii) and (iii)
- (D) All of the above

- 2. Answer **any four** questions: 2×4=8

  (a) Give two advantages of using tetramethyl silane (TMS) as the reference standard in <sup>1</sup>H-NMR spectroscopy.
  - (b) Mention two requirements of a carrier gas in gas chromatography. Why is  $O_2$  unsuitable as a carrier gas?
  - (c) (i) What quantities are usually displayed in a typical FT-IR spectrum?
    - (ii) Convert 20000  $cm^{-1}$  to nm.

1+1=2

- (d) Two analysts determined the percentage of silver in a coin and reported the following results:
- Analyst 1: 100.00, 99.60, 99.70, 99.10

  Analyst 2: 98.80, 98.82, 98.84, 98.81

  If the true value is 100.00, comment on the accuracy and precision of the measurements of both the analysts.
- 3. Answer any three questions: 5×3=15

  (a) Briefly discuss about the working principle of a double-beam UV-visible spectrometer by using a neat diagram.
  - (b) Discuss the advantages and limitations of instrumental methods in chemical analysis.

- (c) Discuss the methods of sample preparation in IR spectroscopy.
- (d) Briefly discuss about the importance of column chromatography in the separation of mixtures.
- (e) The electronic absorption spectrum of a molecule recorded in a solution phase is typically broad in appearance. Explain using appropriate diagram.
- 4. Answer the following questions: 10×3=30
  - (a) Discuss the principle and instrumentation of atomic absorption spectroscopy (AAS). 5+5=10

#### Or

- (i) Briefly discuss the principle of NMR spectroscopy. 5
- (ii) What is chemical shift? What are the factors that affect chemical shift?
- (b) Discuss the principle, instrumentation and applications of gas chromatography. 4+4+2=10

#### Or

Discuss the principle and instrumentation of mass spectrometry.

10

| (c) | An    | swer either (i) to (iii) or (iv) to (vii):                                                         |
|-----|-------|----------------------------------------------------------------------------------------------------|
|     | (i)   | Discuss the instrumentation of FT-IR spectroscopy. 5                                               |
| •   | (ii)  | Discuss the advantages of FT-IR spectrometers over dispersive instruments.                         |
|     | (iii) | What is fingerprint region in IR spectroscopy?                                                     |
|     | • .   | Or                                                                                                 |
| · . | (iv)  | Write down the mathematical form of the Beer-Lambert law and explain the various terms involved.   |
|     | (v)   | Give two important causes of deviations from the Beer-Lambert law.                                 |
|     | (vi)  | What is the significance of the molar extinction coefficient? 1                                    |
|     | (vii) |                                                                                                    |
|     | •     | concentration of $0.50 \text{ mol } dm^{-3}$                                                       |
|     |       | The light intensity is reduced to 54% of its initial value. Calculate the absorbance and the molar |
|     |       | at 280 nm. What would be the                                                                       |
|     |       | transmittance through a cell of thickness 2 cm? 2+2+1=5                                            |