3 (Sem-3) CHM M2

oroni enaction in 2021 o voice work (b)

goo garvast ba (Held in 2022) a one at

CHEMISTRY

(Major)

Paper: 3·2

(Chemical Bonding)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Which has higher bond order, N_2 or NO?
 - (b) Explain briefly why there is no interelectronic repulsion in H_2^+ molecule.

- (c) The shape of XeF₄ molecule is (Fill in the blank)
 - (d) How many octahedral voids are there in one mole of a compound having ccp structure?
 - (e) What do you mean by a hydrogen bond?
 - (f) Which of the following pairs has zero dipole moment?
 - (i) CH_2Cl_2 and NF_3
 - (ii) SiF_4 and BF_3
 - (iii) PCl3 and ClF
 - (iv) BF_3 and NF_3 (Choose the correct option)
 - (g) What are the hybridization of N-atom in NO_3^- and NO_2^+ ?

- 2. Answer the following questions: $2\times4=8$
 - (a) Draw the Lewis structure of HNO_3 and H_2CO_3 .
 - (b) How is the molecular orbital different from atomic orbital? What is the maximum number of electrons that can occupy the molecular orbital?
 - (c) The molecule of $MgCl_2$ is linear whereas $SnCl_2$ is angular. Explain why.
 - (d) In the mineral spinel, $MgAl_2O_4$, what percentage of tetrahedral and octahedral voids are occupied by Mg^{2+} and Al^{3+} ions respectively?
- 3. Answer **any three** questions: 5×3=15
 - (a) Using VSEPR theory, identify the type of hybridization and draw the structure of OF_2 .

- (b) How does bond length vary with the extent of 's' character in the hybrid orbitals involved in bonding? Calculate the percentage of 's' character in sp^3 , sp^2 and sp hybrid orbitals.
- (c) Explain the poor reactivity of N_2 in terms of MO theory.
- (d) Copper crystallizes in FCC lattices. The atomic radius of copper atom is 128pm.Calculate the density of copper.
- (e) CsCl is more stable than NaCl. Explain this stability with the help of both Fajans' rule and closed packed arrangement.
- 4. Answer **any three** questions: $5 \times 3 = 15$
 - (a) (i) Prepare a molecular orbital energy level diagram for CO.

(ii)	What is bond order and how m	any
	unpaired electrons does CO ha	ve?
	(iii) H ₂ Se and H ₂ O (boiling	2

- (b) Describe the molecular geometry of any three hybrid orbitals formed by s, p, 5 and d orbitals of an atom.
- Describe the band theory of metallic bonding. What is an n-type semiconductor? in bonding on the central atom of each
 - Define Radius Ratio. State how radius ratio is helpful in predicting coordination number of ions.

- E=2+1 Derive the Born-Lande equation for Write a note on Perovskites. (ii)
- (e) Compare the following pairs of molecules with respect to the parameters cited 5 within the parenthesis: (d) Discuss the probable electron density
 - Benzene and pyridine (resonance energy)

- (ii) SiCl₄ and CCl₄ (bond angle)
 - (iii) H2Se and H2O (boiling point)
 - (iv) PI3 and SbI3 (bond angle)
- (v) CH₃Cl and CHCl₃ (dipole moment).
- 5. Answer any three questions: 5×3=15
 - (a) What type of hybridization is expected in bonding on the central atom of each of the following molecules?

 $IO_2F_2^-$, $XeOF_4$, CO_3^{2-} , ClO_4^- , SO_2Cl_2

- (b) Derive the Born-Landé equation for lattice energy calculation.
- (c) Discuss how steric and electronic factors affect the molecular properties.
 - (d) Discuss the probable electron density of bonding and antibonding orbitals.

(e) The solubility and stability of ionic solids largely depend on their lattice energies. Explain giving suitable examples.