3 (Sem-3) CHM M2 oroni enaction in 2021 o voice work (b) goo garvast ba (Held in 2022) a one at ## CHEMISTRY (Major) Paper: 3·2 ## (Chemical Bonding) Full Marks: 60 Time: Three hours ## The figures in the margin indicate full marks for the questions. - 1. Answer the following as directed: $1 \times 7 = 7$ - (a) Which has higher bond order, N_2 or NO? - (b) Explain briefly why there is no interelectronic repulsion in H_2^+ molecule. - (c) The shape of XeF₄ molecule is (Fill in the blank) - (d) How many octahedral voids are there in one mole of a compound having ccp structure? - (e) What do you mean by a hydrogen bond? - (f) Which of the following pairs has zero dipole moment? - (i) CH_2Cl_2 and NF_3 - (ii) SiF_4 and BF_3 - (iii) PCl3 and ClF - (iv) BF_3 and NF_3 (Choose the correct option) - (g) What are the hybridization of N-atom in NO_3^- and NO_2^+ ? - 2. Answer the following questions: $2\times4=8$ - (a) Draw the Lewis structure of HNO_3 and H_2CO_3 . - (b) How is the molecular orbital different from atomic orbital? What is the maximum number of electrons that can occupy the molecular orbital? - (c) The molecule of $MgCl_2$ is linear whereas $SnCl_2$ is angular. Explain why. - (d) In the mineral spinel, $MgAl_2O_4$, what percentage of tetrahedral and octahedral voids are occupied by Mg^{2+} and Al^{3+} ions respectively? - 3. Answer **any three** questions: 5×3=15 - (a) Using VSEPR theory, identify the type of hybridization and draw the structure of OF_2 . - (b) How does bond length vary with the extent of 's' character in the hybrid orbitals involved in bonding? Calculate the percentage of 's' character in sp^3 , sp^2 and sp hybrid orbitals. - (c) Explain the poor reactivity of N_2 in terms of MO theory. - (d) Copper crystallizes in FCC lattices. The atomic radius of copper atom is 128pm.Calculate the density of copper. - (e) CsCl is more stable than NaCl. Explain this stability with the help of both Fajans' rule and closed packed arrangement. - 4. Answer **any three** questions: $5 \times 3 = 15$ - (a) (i) Prepare a molecular orbital energy level diagram for CO. | (ii) | What is bond order and how m | any | |------|---|-----| | | unpaired electrons does CO ha | ve? | | | (iii) H ₂ Se and H ₂ O (boiling | 2 | - (b) Describe the molecular geometry of any three hybrid orbitals formed by s, p, 5 and d orbitals of an atom. - Describe the band theory of metallic bonding. What is an n-type semiconductor? in bonding on the central atom of each - Define Radius Ratio. State how radius ratio is helpful in predicting coordination number of ions. - E=2+1 Derive the Born-Lande equation for Write a note on Perovskites. (ii) - (e) Compare the following pairs of molecules with respect to the parameters cited 5 within the parenthesis: (d) Discuss the probable electron density - Benzene and pyridine (resonance energy) - (ii) SiCl₄ and CCl₄ (bond angle) - (iii) H2Se and H2O (boiling point) - (iv) PI3 and SbI3 (bond angle) - (v) CH₃Cl and CHCl₃ (dipole moment). - 5. Answer any three questions: 5×3=15 - (a) What type of hybridization is expected in bonding on the central atom of each of the following molecules? $IO_2F_2^-$, $XeOF_4$, CO_3^{2-} , ClO_4^- , SO_2Cl_2 - (b) Derive the Born-Landé equation for lattice energy calculation. - (c) Discuss how steric and electronic factors affect the molecular properties. - (d) Discuss the probable electron density of bonding and antibonding orbitals. (e) The solubility and stability of ionic solids largely depend on their lattice energies. Explain giving suitable examples.