Total number of printed pages-7

3 (Sem-3 /CBCS) MAT HC 1

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-3016

(Theory of Real Functions)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×10=10
 - (a) Find $\lim_{x \to 2} \frac{x^3 4}{x^2 + 1}$
 - (b) Is the function $f(x) = x \sin(\frac{1}{x})$ continuous at x=0?
 - (c) Write the cluster points of A = (0,1).

- (d) If a function $f:(a,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x)=L$, where $L\in\mathbb{R}$, then $\lim_{x\to\infty}f(x)=?$
- (e) Write the points of continuity of the function $f(x) = \cos \sqrt{1+x^2}$, $x \in \mathbb{R}$.
- (f) "Every polynomial of odd degree with real coefficients has at least one real roof." Is this statement true **or** false?
- (g) The derivative of an even function is function. (Fill in the blank)
- (h) Between any two roots of the function $f(x) = \sin x$, there is at least ———
 root of the function $f(x) = \cos x$.

 (Fill in the blank)
- (i) If $f(x) = |x^3|$ for $x \in \mathbb{R}$, then find f'(x) for $x \in \mathbb{R}$.
- (j) Write the number of solutions of the equation ln(x) = x-2.

- 2. Answer the following questions: 2×5=10
 - (a) Show that $\lim_{x\to 0} (x+sgn(x))$ does not exist.
 - (b) Let f be defined for all $x \in \mathbb{R}$, $x \neq 3$ by $f(x) = \frac{x^2 + x 12}{x 3}$. Can f be defined at x = 3 in such a way that f is continuous at this point?
 - (c) Show that $f(x) = x^2$ is uniformly continuous on [0, a], where a > 0.
 - (d) Give an example with justification that a function is 'continuous at every point but whose derivative does not exist everywhere'.
 - Suppose $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin \frac{1}{x^2}$, for $x \neq 0$ and f(0) = 0. Is f' bounded on [-1,1]?

3

- Answer any four parts: 5×4=20
 - (a) If $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ has a limit at $c \in \mathbb{R}$, then prove that f is bounded on some neighbourhood of c.
 - (b) Let $f(x) = |2x|^{-\frac{1}{2}}$ for $x \neq 0$. Show that $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x) = +\infty.$
 - Show that the function f(x) = |x| is continuous at every point $c \in \mathbb{R}$.
- Give an example to show that the product of two uniformly continuous function is not uniformly continuous a function is continuous at every point
 - (e) Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b]. If f' is positive on [a, b], then prove that f is strictly increasing on [a,b].
 - Evaluate (x)

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$

- 4. Answer any four parts:

 - (a) Let $f: A \to \mathbb{R}$ and let c be a cluster point of A. Prove that the following are equivalent.
 - (a) (i) Let I be $l = f(x) = \lim_{x \to c} f(x) = l$ let $f(x) = \lim_{x \to c} f(x) = l$ be continuous on I.
 - (ii) For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $x \in \mathbb{N}$, the sequence $(f(x_n))$ converges to 1. 10
 - (b) (i) Give examples of functions f and g such that f and g do not have limits at a point c but such that both f+g and fg have limits at c. 6 (e) State and prove maximum-minimum
 - (ii) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and let c be a cluster point of A. If $\lim_{x\to C} f(x)$ exists and if |f| denotes the function defined for $x \in A$ by |f|(x) = |fx|, Proof that

$$\lim_{x \to c} |f|(x) = \left| \lim_{x \to c} f(x) \right|$$

- (c) Prove that the rational functions and the sine functions are continuous on \mathbb{R} .
- (d) (i) Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I.

 Prove that the set f(I) is an interval.
- (ii) Show that the function $f(x) = \frac{1}{1+x^2} \text{ for } x \in \mathbb{R} \text{ is uniformly }$ continuous on \mathbb{R} .
- (e) State and prove maximum-minimum theorem. 2+8=10
- (f) (i) If $f: I \to \mathbb{R}$ has derivative at $c \in I$, then prove that f is continuous at c. Is the converse true? Justify.

6

(ii) If r is a rational number, let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

Determine those values of r for which f'(0) exists.

- (g) State and prove Mean value theorem.

 Give the geometrical interpretation of the theorem. (2+5)+3=10
- (h) State and prove Taylor's theorem.

3 (Sem-3/CBCS) MAT HC 2

(Held in 2022) (Held in 2022)

MATHEMATICS MATHEMATICS

(Honours)

Paper: MAT-HC-3026

(Group Theory-I)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 10=10$
 - (a) Give the condition on n under which the set $\{1, 2, 3, ..., n-1\}$, n > 1 is a group under multiplication modulo n.
 - (b) Define a binary operation on the set $\mathbb{R}^n = \{(a_1, a_2, ..., a_n) : a_1, a_2, ..., a_n \in \mathbb{R}\}$ for which it is a group.

- (c) What is the centre of the dihedral group of order 2n?
- (d) Write the generators of the cyclic group \mathbb{Z} (the group of integers) under ordinary addition.
- (e) Show by an example that the decomposition of a permutation into a product of 2-cycles is not unique.
- (f) Find the cycles of the permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$

(g) Find the order of the permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{pmatrix}$$

(h) Let G be the multiplicative group of all non-singular $n \times n$ matrices over \mathbb{R} and let \mathbb{R}^* be the multiplicative group of all non-zero real numbers. Define a homomorphism from G to \mathbb{R}^* .

- (i) What do you mean by an isomorphism between two groups?
- (j) State the second isomorphism theorem.
- 2. Answer the following questions: 2×5=10
 - (a) Let G be a group and $a \in G$. Show that $\langle a \rangle$ is a subgroup of G.
 - (b) If G is a finite group, then order of any element of G divides the order of G.

 Justify whether this statement is true or false.
 - (c) Show that a group of prime order cannot have any non-trivial subgroup. Is it true for a group of finite composite order?
 - (d) Consider the mapping ϕ from the group of real numbers under addition to itself given by $\phi(x) = [x]$, the greatest integer less than or equal to x. Examine whether ϕ is a homomorphism.

3

- (e) Let ϕ be an isomorphism from a group G onto a group H. Prove that ϕ^{-1} is also an isomorphism from H onto G.
- 3. Answer the following questions: 5×4=20
 - (a) Show that a finite group of even order has at least one element of order 2.

of Il Glu a finite group, then order of any

Let N be a normal subgroup of a group G. Show that G/N is abelian if and only if for all $x, y \in G$, $xyx^{-1}y^{-1} \in N$.

(b) Show that if a cyclic subgroup K of a group G is normal in G, then every subgroup of K is normal in G.

vel numbers of restriction to itself

Show that converse of Lagrange's theorem holds in case of finite cyclic groups.

(c) Consider the group $G = \{1, -1\}$ under multiplication. Define $f: \mathbb{Z} \to G$ by

$$f(x) = 1, \text{ if } n \text{ is even}$$

$$= -1, \text{ if } n \text{ is odd}$$

Show that f is a homomorphism from \mathbb{Z} to G.

- (d) Let $f: G \to G'$ be a homomorphism. Let $a \in G$ be such that o(a) = n and o(f(a)) = m. Prove that o(f(a))/o(a), and if f is one-one, then m = n.
- 4. Answer the following questions: 10×4=40
 - (a) Let G be a group and $x, y \in G$ be such that $xy^2 = y^3x$ and $yx^2 = x^3y$. Then show that x = y = e, where e is the identity element of G.

(c) Consider the grop G= [1,-1] under

Give an example to show that the product of two subgroups of a group is not a subgroup in general. Also show that if *H* and *K* are two subgroups of a group *G*, then *HK* is a subgroup of *G* if and only if *HK* = *KH*. 2+8=10

(b) Prove that the order of a cyclic group is equal to the order of its generator.

10

Oi

Let H be a non-empty subset of a group G. Define $H^{-1} = \{h^{-1} \in G : h \in H\}$. Show that

- doubte (i) if H is a subgroup of G, then $HH = H, H = H^{-1} \text{ and } HH^{-1} = H;$
- then $(HK)^{-1} = K^{-1}H^{-1}$. 5+5=10

(c) Let G be a group and Z(G) be the centre of G. If G/Z(G) is cyclic, then show that G is abelian.

Or

State and prove Lagrange's theorem.

(d) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Show

that
$$G/K \cong G/H/K/H$$
. 10

Or

Prove Cayley's theorem. 10

3.

3 (Sem-3/CBCS) MAT HC 3

2021 In 1202

(Held in 2022)

and of Lancior MATHEMATICS

(Honours)

Paper: MAT-HC-3036

(Analytical Geometry)

0 = b + zwz + yw Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (i) What is the nature of the conic represented by

$$4x^2 - 4xy + y^2 - 12x + 6y + 9 = 0$$
?

(ii) Define skew lines. c biosinos

(iii) Under what condition to reduce but I

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ may represents a pair of parallel straight lines?

- (Held in 2022) (iv) If the axes are rectangular, find the direction cosines of the normal to the plane x+2y-2z=9.
- Write down the conditions under which (v) the general equation of second degree $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represents a sphere.

The figures in the margin indicate

- (vi) If $\frac{x}{1} = \frac{y}{m} = \frac{z}{n}$ is a generator of the cone represented by the homogeneous equation f(x, y, z), then what is the value of f(l, m, n)?
- (vii) What is meant by diametral plane of a fil Define skew lines ? biosinos

- (viii) Find the equation of the line $\frac{x}{a} + \frac{y}{b} = 2$, when the origin is transferred to the parabola $y^2 = 4ax.(a, b)$ ntnioqve that
- (ix) Find the point on the conic $\frac{8}{r} = 3 - \sqrt{2}\cos\theta$ whose radius vector by perbola $x^2 - y^2 = a^2$. 4. ei
 - (x) What is the polar equation of a circle when the pole is at the centre?
- Answer the following questions: 2×5=10
 - (a) Write down the equation to the cone OS=4xz whose vertex is the origin and which passes through the curve of intersection of the plane lx + my + nz = p and the surface $ax^2 + by^2 + cz^2 = 1$.
 - Transform the equation $x^2 y^2 = a^2$ by taking the perpendicular lines y - x = 0and y + x = 0 as coordinate axes.

- (c) If $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ are the extremities of any focal chord of the parabola $y^2 = 4ax$, then prove that $t_1t_2 = -1$.

 (ix) Find the point on the conic
- (d) Find the centre and foci of the hyperbola $x^2 - y^2 = a^2$.
 - (e) Find where the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ meets the plane x+y+z=3. We man

(x) What is the polar equation of a circle

(a) Write down the equation to the cone

3. Answer any four: 5×4=20

(a) If by transformation from one set of rectangular axes to another with the same origin the expression ax + buchanges to a'x' + b'y', prove that $a^2 + b^2 = a'^2 + b'^2.$

- (b) Prove that the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ represents a pair of parallel straight awarb lines, if $\frac{a}{b} = \frac{h}{b} = \frac{g}{f}$. Note 1.
- (c) Find the condition that line $\frac{l}{r} = A\cos\theta + B\sin\theta$

may touch the conic $\frac{l}{r} = 1 - e \cos \theta$.

- (d) Find the equation to the plane which cuts $x^2 + 4y^2 - 5z^2 = 1$ in a conic whose centre is the point (2,3,4).
 - Show that the equation to the cone whose vertex is origin and base is

$$z = k$$
, $f(x, y) = 0$ is $f\left(\frac{kx}{z}, \frac{ky}{z}\right) = 0$.

- (f) A variable plane is at a constant distance p from the origin and meets the axes, which are rectangular in A, B, C. Through A, B, C planes are drawn parallel to the coordinate planes, show that locus of their point of intersection is given by $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 4. Answer the following questions: 10×4=40
 - (a) Find the point of intersection of the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
 - (b) Show that the equation
 - $9x^2 24xy + 16y^2 18x 101y + 19 = 0$ represents a parabola and it can be reduced to the standard form $Y^2 = 3X$. Find the coordinates of the vertex and the focus.

- (c) Prove that the sum of the reciprocals of two perpendicular focal chords of a conic is constant.
- (d) Show that the ortho-centre of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is given by $\frac{x}{l} = \frac{y}{m} = \frac{a+b}{am^2 2hlm + bl^2}$
- (e) Find the condition that the plane lx+my+nz=p may touch the conicoid $ax^2+by^2+cz^2=1$. Verify that the plane 2x-2y+8z=9 touches the ellipsoid $x^2+2y^2+3z^2=9$.
 - (f) Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y+z=0, z+x=0, x+y=0,

x+y+z=a is $\frac{2a}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point x=y=z=-a.

generated by the lines drawn through the points of the circle

$$x+y+z=1, x^2+y^2+z^2=4$$
 which are

parallel to the line
$$\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$$
.

(h) A variable plane is parallel to the given

plane
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$
 and meets the axes

in A, B, C respectively. Prove that the circle ABC lies on the cone

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0.$$

Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes

$$x+y+z=a$$
 is $\frac{2a}{\sqrt{6}}$ and that the three

lines of shortest distance intersect at the point x = y = z = -a,