2017

MATHEMATICS

(Major)

Paper: 2.1

(Coordinate Geometry)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: 1×10=10
 - (a) Transform to axes inclined at 45° to the original axes the equation $x^2 y^2 = a^2$.
 - (b) Write down the condition for pair of lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
 - (c) Write down the parametric equations of the parabola.
 - (d) Write down the direction cosines of x-axis.

(e) About which axis the parabola
$$y^2 = 4ax$$
 is symmetric?

(f) Find the eccentricity of the ellipse
$$x^2 + 3y^2 = a^2$$

(g) Write the equation of the diameter of the ellipse
$$\frac{x^2}{x^2} + \frac{y^2}{h^2} = 1$$

parallel to the line y = mx + c.

(h) Find the centre and radius of the sphere
$$x^2 + y^2 + z^2 - 2x + 4y + 2z + 3 = 0$$

(j) Define enveloping cylinder.

Define conjugate planes.

(a) If the axes be turned through an angle $\tan^{-1} 2$, what does the equation $4xy-3x^2=a^2$ become?

(b) Find the value of
$$k$$
 so that $kxy-8x+9y=12$ may represent pair of straight lines.

A7**/865**

(i)

(Continued

$$x^2 + y^2 + z^2 = 25$$
, $x + 2y - z + 2 = 0$
and the point (1, 1, 1).

(d) If
$$(at_1^2, 2at_1)$$
 and $(at_2^2, 2at_2)$ are the extremities of any focal chord of the parabola $y^2 = 4ax$, prove that $t_1t_2 = -1$.

(e) The axis of a right circular cylinder is
$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$$

and its radius is 5. Find the equations.

3. Answer any two parts:
$$5\times 2=10$$

(a) By transforming to parallel axes through a properly chosen point
$$(h, k)$$
, prove that the equation
$$12x^2 - 10xy + 2y^2 + 11x - 5y + 2 = 0$$

can be reduced to one containing only

terms of the second degree.

(b) Reduce the equation
$$7x^2 - 2xy + 7y^2 - 16x + 16y - 8 = 0$$

to the standard form.

0

(c) Show that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel straight lines, if

$$\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$$

- (d) Prove that the sum of the squares of the reciprocals of two perpendicular diameters of an ellipse is constant.
- 4. Answer any two parts:

(a) Prove that the straight line y = mx + c touches the parabola $y^2 = 4a(x+a)$, if

$$c = ma + \frac{a}{m}$$

- (b) Find the length of the semi-axes of the conic $ax^2 + 2hxy + ay^2 = d$.
- (c) Prove that the line lx + my = n is a normal to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

if
$$\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$
.

- (d) Find the equation of the tangent to the hyperbola $4x^2 9y^2 = 1$ which is parallel to the line 4y = 5x + 7.
- 5. Answer any four parts:

5×4=20

- (a) Find the condition that the homogeneous equation of second degree $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ may represent a pair of planes.
- (b) Obtain the shortest distance between the lines

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$

and

$$\frac{x-\alpha'}{l'} = \frac{y-\beta'}{m'} = \frac{z-\gamma'}{n'}$$

(c) Prove that the equation of the plane containing the line

$$\frac{y}{b} + \frac{z}{c} = 1, \quad x = 0$$

and parallel to the line $\frac{x}{a} - \frac{z}{c} = 1$, y = 0 is

$$\frac{x}{a} - \frac{y}{b} - \frac{z}{c} + 1 = 0$$

If 2d is the shortest distance between the given lines, prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{d^2}$$

(d) Find the condition when the plane bx + my + nz = p becomes a tangent plane to the sphere

$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$

- (e) Find the equation of the cone whose vertex is at the origin.
- (f) Prove that the equation of the polar of the origin with respect to the conic $ax^2 + 2hxy + by^2 + 2ax + 2fy + c = 0$

is
$$gx + fy + c = 0$$
.

6. Answer any four parts:

5×4=20

- (a) Find the equation of the cylinder whose axis and guiding curve are given.
- (b) Find the condition when the plane lx + my + nz = p becomes a tangent plane to the conicoid $ax^2 + by^2 + cz^2 = 1$.
- (c) Find the equation of the enveloping cone of a conicoid whose vertex is given.
- (d) If the section of the enveloping cone of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

whose vertex is P, by the plane z = 0 is a rectangular hyperbola, prove that the locus of P is

$$\frac{x^2 + y^2}{a^2 + b^2} + \frac{z^2}{c^2} = 1$$

(e) Prove that the locus of the poles of tangent plane of the conicoid $ax^2 + by^2 + cz^2 = 1$ with respect to the conicoid $\alpha x^2 + \beta y^2 + \gamma z^2 = 1$ is the conicoid

$$\frac{\alpha^2 x^2}{a} + \frac{\beta^2 y^2}{b} + \frac{\gamma^2 z^2}{c} = 1$$

(f) Find the equation of the right circular cylinder whose guiding curve is

$$x^2 + y^2 + z^2 = 9$$
$$x - y + z = 3$$

· 2017

MATHEMATICS

(Major)

(Differential Equation)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following:

Determine the order and degree of the (a) differential equation

$$K\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$$

- Define Bernoulli's differential equation. (b)
- If the differential equation Mdx + Ndy = 0(c) is homogeneous and $Mx + Ny \neq 0$, write the integrating factor.
- What do you mean by self-orthogonal (d) family of Curves?

(e) What is the complementary function of the following differential equation?

$$(D^3 + 3D^2 + 3D + 1)y = e^{-x}$$

(f) Write down the general solution of the differential equation

$$y = px + p - p^2$$

(g) Write down the condition of exactness of a total differential equation

$$Pdx + Qdy + Rdz = 0$$

(h) Find the particular integral of the differential equation

$$(D^2 + a^2)y = \sin ax$$

- (i) Write the standard form of the linear partial differential equation of order one.
- (i) Find an integral belonging to complementary function of the differential equation

$$y_2 - \cot x y_1 - (1 - \cot x) y = e^x \sin x$$

- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Form the differential equation of which $xy = ae^x + be^{-x}$ (a, b parameters) is a solution.

$$(x+y)^2 \frac{dy}{dx} = a^2$$

$$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$$

(d) If
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 and if $y = 0$
when $x = \frac{\pi}{2}$ express y in terms of x.

(e) Construct the partial differential equation by eliminating a and b from

$$z = (x^2 + a)(y^2 + b)$$

3. Answer any four questions:

5×4=20

(a) Prove that a necessary and sufficient condition that the differential equation Mdx + Ndy = 0 be exact is that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

- (b) Find the orthogonal trajectories of the family of curves $x^2 + y^2 = 2ax$, a being parameter.
- (c) Solve:

$$\frac{dy}{dx} = \frac{3y - 7x + 7}{3x - 7y - 3}$$

(d) Apply variation of parameter to solve the differential equation

$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$

(e) Solve:

$$x^{3} \frac{d^{3}y}{dx^{3}} + 6x^{2} \frac{d^{2}y}{dx^{2}} + 8x \frac{dy}{dx} + 2y = x^{2} + 3x - 4$$

(f) Obtain the general and singular solution of the differential equation

$$y = px + \sqrt{b^2 + a^2 p^2}$$

4. Answer either (a) and (b) or (c) and (d): 5+5=10

(a) Solve:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$$

(b) Solve:

$$t dx = (t-2x) dt$$
$$t dy = (tx+ty+2x-t) dt$$

(c) Solve:

$$\frac{dy}{dx} = x^3y^3 - xy$$

A7/866

(Continued

- (d) Reduce the equation $y^2(y-px) = x^4p^2$, where $p = \frac{dy}{dx}$ to Clairaut's form by the substitution $x = \frac{1}{X}$, $y = \frac{1}{Y}$ and hence solve the equation.
- 6. Answer either (a) and (b) or (c) and (d): 5+5=10
 - (a) Find the necessary condition for integrability of the total differential equation Pdx + Qdy + Rdz = 0.
 - (b) Reduce the differential equation

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x)$$

to the form $\frac{d^2v}{dx^2} + Q_1v = R_1$, where Q_1 and R_1 are functions of x to solve the differential equation.

(c) Solve:

$$x \frac{d^2y}{dx^2} - \frac{dy}{dx} - 4x^3y = 8x^3 \sin x^2$$

by changing the independent variable x to z.

(d) Solve:

$$(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = x(1-x^2)^{3/2}$$

$$\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$$

(b) Solve:

$$3x^2dx + 3y^2dy - (x^3 + y^3 + e^{2z})dz = 0$$

$$xdx + ydy = \frac{a^2(x dy - y dx)}{x^2 + y^2}$$

is exact and hence solve it.

(d) Find
$$f(z)$$
 such that
$$\left(\frac{y^2 + z^2 - x^2}{2x}\right) dx - y dy + f(z) dz = 0$$

is integrable and hence solve it.

$$z(x+y)p+z(x-y)q=x^2+y^2$$

$$pxy + pq + qy - yz = 0$$

Solve by Charpit's method

(d)

- (c) Find the complete integral of $9(p^2z+q^2)=4$. Also find the singular solution if it exists.
- (d) Derive the partial differential equation by the elimination of arbitrary function from the equation $\phi(u, v) = 0$, where u and v are functions of x, y and z.

