1 (Sem-4) MAT 4

2025

MATHEMATICS

Paper: MAT0400404

(Number Theory-I)

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×8=8
 - (a) State Well-Ordering Principle.
 - (b) If a and b are integers with $b\neq 0$, then there exist unique integers q and r such that a=qb+r where

(i)
$$0 < r \le b$$

(ii)
$$0 \le r < |b|$$

(iii)
$$0 \le r \le b$$

(iv)
$$0 \le r \le |b|$$

(Choose the correct option)

(c) Which of the following Diophantine equation cannot be solved?

(i)
$$6x + 51y = 22$$

(ii)
$$24x + 138y = 18$$

(iii)
$$158x - 57y = 7$$

(iv)
$$221x + 35y = 11$$

- (d) Give an example to show that $a^2 \equiv b^2 \pmod{n}$ need not imply that $a \equiv b \pmod{n}$.
- (e) Without performing the division, determine whether the integer 176, 521, 221, is divisible by 9.
- (f) If p is a prime number, then

$$(i) \quad (p-1)! \equiv 1 \pmod{p}$$

(ii)
$$(p-1)! \equiv -1 \pmod{p}$$

(iii)
$$(p+1)! \equiv 1 \pmod{p}$$

(iv)
$$(p+1)! \equiv -1 \pmod{p}$$

(Choose the correct option)

- (a) Find $\sigma(180)$.
- (h) Define Möbius μ -function.
- 2. Answer the following questions: 2×6=12
 - (a) If $a \mid c$ and $b \mid c$ with gcd (a,b)=1, then prove that $ab \mid c$.
 - (b) Prove that gcd(a+b,a-b)=1 or 2 if gcd(a,b)=1.
 - (c) Use Fermat's theorem to show that $5^{38} \equiv 4 \pmod{11}$.
 - (d) Show that 41 divides $2^{20} 1$.
 - (e) If n is a square free integer, prove that $\tau(n) = 2^r$, where r is the number of prime divisors of n.
 - (f) For n>2, prove that $\phi(n)$ is an even integer.

- 3. Answer **any four** of the following questions: $5\times4=20$
 - (a) State and prove Archimedean property.

 1+4=5
 - (b) Use the Euclidean Algorithm to obtain integers x and y satisfying gcd(12378, 3054) = 12378x + 3054y
 - (c) Use Chinese Remainder Theorem to solve the simultaneous congruences

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

(d) If n and r are positive integers with $1 \le r < n$, then prove that the bionomial coefficient

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

is also an integer.

(e) Prove that every positive integer n>1 can be expressed uniquely as a product of primes a part from the order in which the factor's occur.

4

- (f) If p and q are distinct primes, prove that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$
- (g) If f is a multiplicative function and F be defined by $F(n) = \sum_{d|n} f(d)$, then prove that F is also multiplicative.
- (h) If $n \ge 1$ and gcd(a,n)=1, then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$.
- 4. Answer **any two** of the following questions: $10 \times 2 = 20$
 - (a) (i) Prove that for given integers a and b, with b>0, there exist unique integers q and r satisfying $a = bq + r, \ 0 \le r < b$
 - (ii) Establish the following formula by Mathematical induction.

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
for all $n \ge 1$

(ii) Determine all solutions in the positive integers of the Diophantine equation
$$172x + 20y = 1000$$

(c) (i) Prove that if
$$p$$
 is a prime and $p \nmid a$, then
$$a^{p-1} \equiv 1 \pmod{p}$$
Is the converse of it true? Justify. $5+1=6$

(ii) Solve:
$$9x = 21 \pmod{30}$$
.

(ii) Prove that the quadratic congruence
$$x^2 + 1 \equiv 0 \pmod{p}$$
 where p is an odd prime has a solution if and only if $p \equiv 1 \pmod{4}$.

(e) (i) If
$$n = p_1^{k_1} p_2^{k_2} p_r^{k_r}$$
 is the prime factorization of $n > 1$, then prove that

(I)
$$\tau(n) = (k_1 + 1)(k_2 + 1)...(k_r + 1)$$

(II)
$$\sigma(n) = \left(\frac{p_1^{k_1+1}-1}{p_1-1}\right)\left(\frac{p_2^{k_2+1}-1}{p_2-1}\right).....\left(\frac{p_r^{k_r+1}-1}{p_r-1}\right)$$

(ii) For each positive integer $n \ge 1$, prove that

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$$