2025

MATHEMATICS

Paper: MAT0400104

(Real Analysis)

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

- Answer the following questions : 1×8=8
 তলৰ প্ৰশ্নসমূহৰ উত্তৰ দিয়া :
 - (a) Determine the set

$$A=\left\{x\in\mathbb{R}:rac{x^2+5}{4x+1}<1
ight\}$$
 $A=\left\{x\in\mathbb{R}:rac{x^2+5}{4x+1}<1
ight\}$ সংহতিটো নিৰূপণ

- (b) Write the trichotomy property of real numbers.
 বাস্তৱ সংখ্যাৰ ত্ৰিকোট'মি ধৰ্মটো লিখা।
- (c) If $A = \{x \in \mathbb{R} : x^2 5x + 6 < 0\}$, find $\sup A$. $A = \{x \in \mathbb{R} : x^2 5x + 6 < 0\}$ হ'লে $\sup A$ নিৰ্ণয় কৰা ।

(d) Write the first five terms of the sequence $\{x_n\}$, where $x_n = \frac{1}{n^2 + 2}$.

 $\{x_n\}$ অনুক্রমটোৰ প্রথম পাঁচটা ৰাশি লিখা, য'ত

$$x_n = \frac{1}{n^2 + 2}$$

- (e) Find $\lim_{n\to\infty} \left(\frac{1}{n} \frac{1}{n+1}\right)$. $\lim_{n\to\infty} \left(\frac{1}{n} \frac{1}{n+1}\right)$ -ৰ মান নিৰ্ণয় কৰা।
- (f) What is a monotone sequence? Give one example.

 একদিষ্ট অণ্ক্ৰম বুলিলে কি বুজা? এটা উদাহৰণ দিয়া।
- (g) State Cauchy's criterion for convergence of a series $\sum_n x_n$. $\sum_n x_n$ শ্ৰেণীৰ অভিসাৰিতাৰ বাবে ক'চিৰ নিৰ্ণায়ক বা নিয়মটো লিখা।
- (h) Give an example of a series in R which is convergent, but not absolutely convergent.
 বাস্তৱ সংখ্যাত এনেকুৱা এটা শ্ৰেণীৰ উদাহৰণ দিয়া, যিটো অভিসাৰী, কিন্তু পৰম অভিসাৰী নহয়।

2. Answer any six of the following questions: $2\times 6=12$

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো ছয়টাৰ উত্তৰ দিয়া:

- (a) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then show that a = 0.

 यिष $a \in \mathbb{R}$ এনেকুৱা যে সকলো $\varepsilon > 0$ -ৰ বাবে $0 \le a < \varepsilon$ হয়, তেনেহ'লে দেশুওৱা যে a = 0 হ'ব।
- (b) State the completeness property of R. Mention one example to demonstrate this property.

 বাস্তব সংখ্যাৰ completeness property টো
 লিখা। এই ধৰ্মটো সিদ্ধ হোৱা দেখুৱাবলৈ এটা উদাহৰণ
 দিয়া।
- (c) Show that for all $a \in \mathbb{R}$, $|a|^2 = a^2$.
 দেখুওৱা যে সকলো $a \in \mathbb{R}$ -ৰ বাবে $|a|^2 = a^2$.
- (d) Let A and B be non-empty subsets of ℝ such that a ≤ b for all a ∈ A, b ∈ B. Show that sup A ≤ inf B.
 যদি A আৰু B বাস্তৱ সংখ্যাৰ দুটা এনেকুৱা অৰিক্ত সংহতি যাতে a ≤ b হয়, সকলো a ∈ A, b ∈ B-ৰ বাবে, তেনেহ'লে দেখুওৱা যে sup A ≤ inf B.
- (e) Show that the sequence $\{1, 2, \dots, n, \dots\}$ does not converge to any $x \in \mathbb{R}$.

 দেবুওৱা যে $\{1, 2, \dots, n, \dots\}$ এই অণুক্রমটো কোনো $x \in \mathbb{R}$ -লৈ অভিসাবী নহয়।

- (f) Determine the limit of the sequence $\{x_n\}$, where $x_n=\sqrt{n^2+5n}-n$. $\{x_n\}$ অণুক্রমটোৰ চৰম মান নির্ণয় কৰা, য'ত $x_n=\sqrt{n^2+5n}-n$
- (g) Examine the convergence or divergence of the sequence $\left\{1,\frac{1}{2},3,\frac{1}{4},\cdots\right\}$. $\left\{1,\frac{1}{2},3,\frac{1}{4},\cdots\right\}$ এই অণুক্রমটো অভিসাধী নে অপসাধী পৰীক্ষা কৰা ।
- (h) If a series $\sum_{n} x_n$ is convergent, then show that

$$\lim_{n\to\infty}x_n=0$$

যদি $\sum_n x_n$ শ্ৰেণীটো অভিসাৰী হয়, তেন্তে দেখুওৱা যে $\lim_{n \to \infty} x_n = 0$

হ'ব।

(i) Show that the series $\sum_n \sin \frac{1}{n}$ is divergent. দেখুওৱা যে $\sum_n \sin \frac{1}{n}$ শ্ৰেণীটো অপসাৰী।

(j) Use comparison test to show that the series

$$\sum_{n} \frac{1}{n^2 + a_n}$$

where $\{a_n\}$ is a sequence of strictly positive real numbers, is convergent.

তুলনামূলক পৰীক্ষাৰ সহায়ত দেখুওৱা যে

$$\sum_{n} \frac{1}{n^2 + a_n}$$

য'ত $\{a_n\}$ এটা তীক্ষ্ণভাৱে ধনাত্মক বাস্তৱ সংখ্যাৰ অণুক্রম, এই শ্রেণীটো অভিসাৰী হ'ব।

3. Answer any four of the following questions:

5×4=20

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো চাৰিটাৰ উত্তৰ দিয়া:

- (a) State and prove the triangle inequality in ℝ. বাস্তৱ সংখ্যাৰ ত্ৰিভুজ অসমতাটো উল্লেখ কৰি তাৰ প্ৰমাণ দিয়া।
- (b) Solve the following inequality :
 তলৰ অসমতাটো সমাধান কৰা :
 |x|+|x+1|<2
- (c) Let A and B be bounded non-empty subsets of R. Prove that ধবা হ'ল, A আৰু B বাস্তৱ সংখ্যাৰ দুটা পৰিবদ্ধ অৰিক্ত সংহতি। প্ৰমাণ কৰা যে

 $\inf(A+B) = \inf A + \inf B$

- (d) If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, then show that $\inf S = 0.$ যদি $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, তেনেহ'লে দেখুওৱা যে $\inf S = 0$ হ'ব।
- (e) Let $\{x_n\}$ and $\{y_n\}$ be real sequences converging to x and y respectively. Show that $\{x_n+y_n\}$ converges to x+y.

 যদি $\{x_n\}$ আৰু $\{y_n\}$ বাস্তৱ সংখ্যাৰ অণুক্রম দুটা যথাক্রমে x আৰু y-লৈ অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে $\{x_n+y_n\}$ অণুক্রমটো x+y-লৈ অভিসাৰী হ'ব।
- (f) Show that a convergent sequence of real numbers is bounded. দেখুওৱা যে বাস্তৱ সংখ্যাৰ অভিসাৰী অণুক্ৰম এটা পৰিবদ্ধ হয়।
- (g) Prove that the p-series $\sum_n \frac{1}{n^p}$ converges for p>1. প্রমাণ কৰা যে $\sum_n \frac{1}{n^p}$ এই p-শ্রেণীটো p>1-ৰ বাবে অভিসাৰী হয়।

(h) Let $\{x_n\}$ be a sequence of non-zero real numbers. If there exists $r \in \mathbb{R}$ with 0 < r < 1 and $k \in \mathbb{N}$ such that

$$\left|\frac{x_{n+1}}{x_n}\right| \le r \text{ for } n \ge k$$

then prove that the series $\sum_n x_n$ is absolutely convergent.

ধৰা হ'ল $\{x_n\}$ অশূন্য বাস্তৱ সংখ্যাৰ এটা অণুক্ৰম । যদি $r \in \mathbb{R}$ এনেকুৱা যাতে 0 < r < 1 আৰু $k \in \mathbb{N}$ -ৰ বাবে

$$\left| \frac{x_{n+1}}{x_n} \right| \le r$$
 সকলো $n \ge k$ -ৰ বাবে

তেনেহ'লে দেখুওৱা যে $\sum_n x_n$ শ্ৰেণীটো পৰম অভিসাৰী হ'ব।

4. Answer any *two* of the following questions: 10×2=20

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো দুটাৰ উত্তৰ দিয়া :

- (a) State and prove monotone subsequence theorem of real numbers.
 বাস্তৱ সংখ্যাৰ একদিষ্ট উপাণুক্রম উপপাদ্যটো লিখি প্রমাণ কৰা।
- (b) Prove Cauchy's criterion for convergence of real sequence.
 বাস্তৱ অণুক্রমৰ অভিসাৰিতাৰ বাবে ক'চিৰ নির্ণায়ক বা
 নিয়মটো প্রমাণ কৰা।

- (c) Show that every contractive sequence is convergent.
 দেশুওরা যে প্রতিটো সংকৃচিত অণুক্রম অভিসারী হয় ।
- (d) Prove that if a series $\sum_{n} x_n$ is absolutely convergent, then any rearrangement $\sum_{k} y_k$ of $\sum_{n} x_n$ is also convergent to the same value.

যদি $\sum_n x_n$ শ্ৰেণীটো পৰম অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে শ্ৰেণীটোৰ পদসমূহ সালসলনি কৰি গঠন কৰা যি কোনো এটা শ্ৰেণী $\sum_k y_k$ ও একেটা মানলৈকে অভিসাৰী হ'ব।

(e) If the series $\sum_{n} x_{n}$ and $\sum_{n} y_{n}$ are convergent, then show that $\sum_{n} (x_{n} + y_{n})$ is also convergent. Does the similar result hold in case of $\sum_{n} x_{n} y_{n}$? Justify your answer.

যদি $\sum_n x_n$ আৰু $\sum_n y_n$ এই শ্ৰেণী দুটা অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে $\sum_n (x_n + y_n)$ শ্ৰেণীটোও অভিসাৰী হ'ব। $\sum_n x_n y_n$ শ্ৰেণীটোৰ বাবেও এই একেটা কথাই প্ৰযোজ্য হ'বনে? তোমাৰ উত্তৰৰ সত্যতা প্ৰতিপন্ন কৰা।
