Total number of printed pages-7

3 (Sem-4/CBCS) STA HC 1

2024 STATISTICS

(Honours Core)

Paper: STA-HC-4016

(Statistical Inference)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1.	Answer	the	following	questions	as	directed:
						1×7=7

(a)	An estimator $\hat{\theta}$ of a parameter θ is								
arri	said to be unbiased if								
	(Fill in the blank)								

(b)	The variance	S^2 of a sample of size n
	is a	estimator of population
	variance σ^2 .	(Fill in the blank)

- (c) Critical region is also known as _____.

 (Fill in the blank)
 - (d) Maximum likelihood estimator is always unbiased. (Write True or False)
 - (e) If β is the probability of type II error, then $(1-\beta)$ is known as _____.

 (Fill in the blank)
 - (f) The choice of one-tailed or two-tailed test depends on _____.

(Fill in the blank)

(g) If MLE (maximum likelihood estimate) exists, it is the most efficient estimator in the class of such estimators.

(State True or False)

- 2. Answer the following questions briefly: $2\times4=8$
 - (a) If T is an unbiased estimator for θ , show that T^2 is a biased estimator for θ^2 .
 - (b) Define best critical region (BCR) for a test.
 - (c) Estimate θ for the distribution

$$f(x, \theta) = \frac{2}{\theta^2}(\theta - x), \ 0 < x < \theta$$

for sample of size one.

- (d) State the asymptotic properties of likelihood ratio (LR) test.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) For a random sample $x_1, x_2,....., x_n$ from $N(\mu, \sigma^2)$, find sufficient estimators for μ and σ^2 .

3

- (b) A random sample $x_1, x_2,, x_n$ is taken from a normal population with mean 0 and variance σ^2 . Examine whether $\sum_{i=1}^{n} \frac{x_i^2}{n}$ is a minimum variance bound (MVB) estimator for σ^2 .
 - (c) Given that T_n is a consistent estimator of $\gamma(\theta)$ and $\psi\{\gamma(\theta)\}$ is a continuous function of $\gamma(\theta)$, prove that $\psi(T_n)$ is a consistent estimator of $\psi\{\gamma(\theta)\}$.
 - (d) State Neyman-Pearson (NP) lemma and likelihood ratio test. When do the likelihood ratio principle and NP lemma (Neyman-Pearson lemma) give the same test?
 - (e) Write a note on sequential probability ratio test.

- 4. Answer **any three** of the following questions: $10 \times 3 = 30$
 - (a) (i) Define critical region. Also explain type I and type II errors.

2+2+2=6

(ii) In testing $H_0: \theta=1$ against $H_1: \theta=2$ for the frequency distribution

$$f(x, \theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

determine the type I and type II errors for a critical region (CR) $0.5 \le x$.

(b) (i) Given that $x_1, x_2,, x_n$ is a random sample drawn from a Poisson population with parameter

5

 λ . Test whether $T = \sum_{i=1}^{n} x_i$ is complete.

- (ii) Write briefly about the method of maximum likelihood estimation (MLE).
 - (c) Define Minimum Variance Unbiased estimator. Prove that MVU estimator is unique.
 - (d) (i) What are the regularity conditions for Cramer-Rao inequality? 5
- (ii) A random sample $x_1, x_2,, x_n$ is taken from uniform population with mean zero and variance θ . Find a sufficient estimator for
 - (e) If W be a most powerful critical region of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ then it is necessarily unbiased.

(f) Determine the best critical region for the test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 > \theta_0$ for a normal population $N(\theta, \sigma^2)$, where σ^2 is known.

Total number of printed pages-8

3 (Sem-4/CBCS) STA HC 2

2024

STATISTICS

(Honours Core)

Paper: STA-HC-402

(Linear Models)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 7 = 7$
 - (a) As variability due to chance decreases, the value of F will
 - (i) increase
 - (ii) decrease
 - (iii) stay the same
 - (iv) Can't tell from the given information

 (Choose the correct option)

Contd.

- (b) The degree of freedom associated with error mean of squares in two-way classification (with one observation per cell) is:
 - (i) n-1
 - (ii) k-1
 - (iii) (n-1)(k-1)
 - (iv) nk-1

(Choose the correct option)

(c) The term $\sum_{i}\sum_{j}\left(y_{ij}-\overline{y}_{io}\right)^{2}$ in one-way

ANOVA is called

- (i) Variance
- (ii) Total sum of squares
- (iii) Sum of squares due to treatments
- (iv) Error sum of squares (Choose the correct option)
- (d) The equation that describes how the response variable (Y) is related to the explanatory variable (X) is
 - (i) the correlation model
 - (ii) the regression model

2

- (iii) used to compare the correlation coefficient
- (iv) None of the above (Choose the correct option)

- (e) SSE cannot be
 - (i) larger than SST
 - (ii) smaller than SST
 - (iii) equal to none
 - (iv) equal to zero
 (Choose the correct option)
- (f) If the coefficient of determination is equal to 1, then the correlation coefficient
 - (i) must also be equal to 1
 - (ii) can be either -1 or +1
 - (iii) can be any value between -1 and 1
 - (iv) must be -1 (Choose the correct option)
- (g) If the coefficient of determination is 0.64, the correlation coefficient
 - (i) is 0.529
 - (ii) could be either 0.80 or -0.80
 - (iii) must be positive
 - (iv) must be negative (Choose the correct option)

- 2. Answer the following questions briefly: 2×4=8
 - (a) State some applications of analysis of variance.
 - (b) What is the difference between R^2 and adj R^2 .
 - (c) Define linear model.
 - (d) Consider the model

$$Y_i = i\beta + \varepsilon_i$$
; $i = 1, 2, 3$

where ε_1 , ε_2 and ε_3 are independent with zero mean and variance σ^2 , $2\sigma^2$ and $3\sigma^2$ respectively. Find the mean and variance of

$$T = \frac{Y_1 + Y_2 + Y_3}{6}$$

- 3. Answer **any three** of the following questions: 5×3=15
 - (a) There are 3 observations independently drawn such that

$$y_1 = \theta_1 + \varepsilon_1$$

$$y_2 = \theta_1 + \theta_2 + \varepsilon_2$$

$$y_3 = \theta_2 + \varepsilon_2$$

where θ_1 and θ_2 are unknown parameters and ε_1 , ε_2 and ε_3 are i.i.d. $N(0, \sigma^2)$. Find the best linear unbiased

estimator (BLUE) of θ_1 and θ_2 .

(b) Let $y_i = \alpha_1 + \alpha_2 x_i + \varepsilon_i$; i = 1, 2, ..., 10 where x_i 's are fixed covariates and ε_i 's are i.i.d. $N(0, \sigma^2)$ random variables. Suppose $\hat{\alpha}_1$ and $\hat{\alpha}_2$ are least square estimators of α_1 and α_2 respectively. Given the following data:

$$\sum_{i=1}^{10} x_i = 0, \sum_{i=1}^{10} x_i^2 = 21, \sum_{i=1}^{10} x_i y_i = 21,$$

$$\sum_{i=1}^{10} y_i = 12, \sum_{i=1}^{10} y_i^2 = 58.$$

Show that correlation coefficient between $\hat{\alpha}_1$ and $\hat{\alpha}_2$ is zero.

- (c) Define analysis of variance (AoV). Write down the assumptions involved in AoV. 2+3=5
- (d) Using the following data:

Y: 65 57 57 54 66

 $X : 26 \ 13 \ 16 \ -7 \ 27$

Estimate the regression line $Y = \alpha + \beta X$.

- Write short notes on: 21/2+21/2=5
 - Coefficient of determination
 - Parametric function
- Answer any three of the following: 10×3=30
 - (a) Define estimable function. Let Y_1 , Y_2 , Y3 be uncorrelated observations with common variance σ^2 and $E(Y_1) = \theta_0 + \theta_1$, $E(Y_2) = \theta_0 + \theta_2$, $E(Y_3) = \theta_0 + \theta_3$, where θ_i 's; i = 1, 2, 3 are unknown parameters. Show that $\theta_1 - \theta_2$, $\theta_1 - \theta_3$ and $\theta_2 - \theta_3$ are each estimable.
 - State the Gauss-Markov theorem. (b)
 - Let y_1, y_2, y_3 be uncorrelated observations with common variance σ^2 and $E(y_1) = \alpha_1$, $E(y_2) = \alpha_2$ and $E(y_3) = \alpha_1 + \alpha_2$, where α_1 and α_2 are unknown parameters. Show that $T = \frac{y_1 + y_2 + y_3}{3}$ is the Best Linear Unbiased Estimator of $\alpha_1 + \alpha_2$.

6

- Derive the analysis of variance for two-(c) way classification data with one observation per cell under fixed effect model.
- There are 4 observations independently drawn such that

$$y_1 = \beta_1 + \varepsilon_1$$

$$y_2 = \beta_2 + \varepsilon_2$$

$$y_3 = \beta_3 + \varepsilon_3$$

$$y_4 = \beta_1 + \beta_2 + \beta_3 + \beta_4$$

where β_1 , β_2 , β_3 and β_4 are unknown parameters and ε_i 's, i = 1, 2, 3, 4 are and identically independently distributed normal variables with mean zero and known variance σ^2 . Find the variance of the unbiased estimator of β_1 , β_2 , β_3 and β_4 .

Define simple linear regression model. (e) Write the basic assumptions of simple linear regression model. Estimate the parameters of the model.

7

2+3+5=10

(f) For a simple regression model $y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$; $i = 1, 2, ..., \gamma$, find the $100(1-\alpha)\%$ confidence interval for mean response at a particular value of the regression variable X.