#### 2018

**PHYSICS** 

(Major)

Paper : 1.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

# GROUP—A

### ( Mathematical Methods )

( Marks : 20 )

(a) Find the Cartesian component of a vector  $\overrightarrow{C}$  which is perpendicular to the vector  $\overrightarrow{A}$  and vector  $\overrightarrow{B}$ , where

$$\vec{A} = 2\hat{i} - \hat{j} + \hat{k}$$
 and  $\vec{B} = 3\hat{i} + 4\hat{j} - \hat{k}$  1

Define vector field in a region of space. (b) Give an example of vector field. 1

- 2. (a) Give the vector diagram representation of  $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C}$  and  $\overrightarrow{B} \times \overrightarrow{A} = \overrightarrow{D}$ . Name a physical vector quantity which is the product of two vectors.
  - (b) What is the physical significance of divergence of a vector?
  - (c) Find the projection of vector  $\vec{A}$  on vector  $\vec{B}$ , where  $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{B} = \hat{i} 3\hat{j} + 4\hat{k}$ .
  - (d) A particle with position vector  $\vec{r} = \cos \omega t \, \hat{i} + \sin \omega t \, \hat{j}$  moves with a constant angular velocity  $\omega$ . The linear velocity  $\vec{v}$  of the particle is perpendicular to  $\vec{r}$ . Show that  $\vec{r} \times \vec{v}$  is a constant vector.
- 3. Answer any two questions:

2

2

2

2

(a) If  $\overline{V} = \overline{a} \cos \omega t + \overline{b} \sin \omega t$ , find that

$$\vec{V} \times \frac{d\vec{V}}{dt} = \omega(\vec{a} \times \vec{b})$$

Here  $\vec{a}$  and  $\vec{b}$  are two constant non-linear vectors and  $\omega$  is constant scalar.

- (b) If  $r = (x^2 + y^2 + z^2)^{1/2}$ , show that  $\nabla^2 \left(\frac{1}{r}\right) = 0$
- (c) Show that gradient of any scalar field  $\phi(r)$  is irrotational and the curl of any vector field  $\overrightarrow{V}(r)$  is solenoidal.

#### GROUP-B

## ( Mechanics )

( Marks: 40 )

- 4. (a) What is fictitious force? Give an example of it.
  - (b) Is the centre of mass frame of reference an inertial frame? Explain.
  - (c) A particle is moving horizontally at the equator. What is the value of Coriolis force acting on it in local coordinate system?
  - (d) What is the difference between laboratory frame of reference and centre of mass frame of reference?

(Continued A9/391

1

1

1

- When is a force field said to be conservative? Give example an conservative force.
- Can we have equipotential surfaces of (f) the gravitational field of a point mass? What is the value of work done if a mass moves on an equipotential surface?
- Two particles of mass 2 kg each are moving with velocity  $(2\hat{i} + 4\hat{j})$  m/s and  $(5\hat{i} + 6\hat{i})$  m/s respectively. Find the kinetic energy of the system relative to centre of mass.
  - (b) Show that force field given  $\vec{F} = x^2 yz\hat{i} - xyz^2\hat{k}$  is non-conservative.
- **6.** Answer any two questions:

 $5 \times 2 = 10$ 

1

Show that whenever a body is acted upon by a number of forces such that the resultant is not zero, then the work done by the resultant force is equal to the change in the kinetic energy of the body.

- Calculate the moment of inertia of a thin hollow sphere about its diameter.
- Find the centre of mass of a uniform solid hemisphere of radius a.
- 7. Answer any two questions:

10×2=20

- Distinguish between inertial mass (a) and gravitational mass.
  - (ii) Obtain an expression for the gravitational potential and field due to a thin uniform spherical shell at an external point.
  - (iii) The radius of the earth is  $6.637 \times 10^6$  m and its mean density is  $5.57 \times 10^3$  kg/m<sup>3</sup>. Calculate earth surface potential. Given  $G = 6.66 \times 10^{11} \text{ Nm}^2 \text{ kg}^{-2}$ . 2+5+3=10
- What is the effect of Coriolis force (b) on a particle falling freely under the action of gravity?

- (ii) Show that the angular accelerations of a particle in a fixed system and a rotating system are same.

  5+5=10
- (c) (i) Give a schematic diagram of elastic collision of two particles in centre of mass frame and laboratory frame.
  - (ii) Obtain a relation of scattering angles in these two frames of reference. 2+8=10
- (d) (i) Prove that a conservative force can be expressed as negative gradient of potential.
  - (ii) Two particles of masses  $m_1$  and  $m_2$  separated by infinite distance apart, attract each other according to the law of gravitation. Considering the particles to be initially at rest, show that their velocity of approach

$$v = \sqrt{\frac{2G(m_1 + m_2)}{a}}$$

where a is final separation of the two masses

(iii) Find the force field associated with the potential energy  $V = Ae^{\alpha(x+y+z)}$ , where A and  $\alpha$  are constants.

4 4 4

#### 2018

#### **PHYSICS**

(Major)

Paper: 1.2

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### SECTION-I

# ( Waves and Oscillations )

( Marks: 40 )

- 1. (a) What is the phase difference between the displacement and acceleration of a particle executing SHM?
  - (b) A wave  $y = a\sin(\omega t kx)$  on a string meets with another wave producing a node at x = 0. Write the wave equation of the unknown wave.
  - (c) What is reverberation of sound?
  - (d) The function  $f(x) = x^2$  is defined within the interval  $-\pi \le x \le \pi$  and outside it is periodic. State whether the function is even or odd within  $-\pi \le x \le \pi$ .

1

1

1

- 2. (a) What is sharpness of resonance? Explain the effect of damping on the sharpness of resonance.
  - (b) The phase velocity V depends on the wavelength  $\lambda$  according to relation  $V = A\sqrt{\lambda}$ , where A is constant. Show that group velocity is half of the phase velocity.
  - (c) If the displacement x and velocity V of a particle executing simple harmonic motion are related through the expression  $4V^2 = 25 x^2$ , then calculate its time period.
- 3. Answer any two questions:

(a) Show that in case of damped oscillation the loss of energy is equal to the rate of work done against the resistive force.

- (b) A particle is simultaneously subjected to two simple harmonic motions moving in the same direction, each of same frequency but of different amplitude. If phase difference between them is  $\pi/4$ , find the amplitude of the resultant motion and the phase relation to one of the components.
- (c) Derive the expression for the velocity of transverse wave propagating in a stretched string under tension.

Answer any two questions:

4. Find the Fourier series for a function

$$f(x) = 0$$
, for  $-\pi < x < 0$   
= h, for  $0 < x < \pi$ 

What are the conditions for a function which can be expanded by Fourier series? 7+3=10

- 5. What are beats? Give an analytical description of the phenomenon of beats. Show that the beat frequency is equal to the difference of frequencies of the component oscillations. 2+4+4=10
- **6.** (a) Show that intensity of sound wave at a point is given by

$$I = \frac{P_{rms}^2}{\rho V}$$

where  $P_{rms}$  is root mean square velocity of excess pressure,  $\rho$  is the density of the gaseous medium and V is the velocity of sound.

(b) If intensity level of a sound is increased by 1 dB, then calculate the percentage increase of intensity of the sound.

A9/392

5×2=10

(Continued)

(Turn Over)

6

7. (a) A transverse wave is represented by

$$y = y_0 \sin \frac{2\pi}{\lambda} (vt - x)$$

Find the value of  $\lambda$  for which the maximum particle velocity becomes equal to twice the wave velocity.

(b) For a particle executing SHM, show that its average kinetic energy is equal to half of its total energy.

SECTION—II

( Ray Optics )

( Marks : 20 )

# Answer any four questions

- 8. State Fermat's principle for stationary path with the mathematical relation of optical path variation. Establish the Fermat's principle for refraction at curved surface.
- 9. What do you mean by translation matrix? Find out an expression of translation matrix which transforms a ray  $\begin{bmatrix} \lambda_1 \\ x_1 \end{bmatrix}$  into the ray  $\begin{bmatrix} \lambda_2 \\ x_2 \end{bmatrix}$  during translation through a distance d in a homogenous medium.

10. A concave lens is placed at a distance of 25 cm in front of a concave mirror of focal length 20 cm. It is found that a pin placed at a distance of 45 cm in front of the lens coincide with its own inverted image formed by the combination. Using refraction matrix, find the focal length of the lens.

- 11. What is spherical aberration in a lens? What is circle of least confusion in this aberration? Find out the condition for minimisation of spherical aberration by using two lenses separated by finite distance.

  1+1+3=5
- 12. Write a short note on any one of the following:
  - (a) Chromatic aberration and its elimination
  - (b) High power oil immersion objective

\* \* \*

4

6

5