3 (Sem-5/CBCS) MAT HC 1

2024

MATHEMATICS

(Honours Core)

(New Course)

Paper: MAT-HC-5016

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) The function

$$f(z) = xy^2 + e^{xy} + i(2x - y)$$
 is

continuous everywhere in the complex plane. (State True or False)

- (b) Let the function f(z) = u(x,y) + iv(x,y)be defined throughout some ε -neighbourhood of a point $z_0 = x_0 + iy_0$. State a sufficient condition for existence of the derivative $f'(z_0)$.
- (c) Find $\lim_{z \to -1} \frac{iz+3}{z+1}$.
- (d) Define entire function and give an example.
- (e) Show that $exp(2\pm 3\pi i) = -e^2$.
- (f) What is a Jordan curve?
- (g) State Liouville's theorem.
- 2. Answer the following questions: 2×4=8
 - (a) Using $\varepsilon \delta$ definition, show that if $f(z) = z^2 \text{ then } \lim_{z \to z_0} f(z) = z_0^2.$
 - (b) Show that $f(z) = \begin{cases} z^2, z \neq z_0 \\ 0, z = z_0 \end{cases}$ where $z_0 \neq 0$ is discontinuous at $z = z_0$.

- (c) Determine the singular points of the function, $f(z) = \frac{2z+1}{z(z^2+1)}$.
- (d) Evaluate $\int_C \overline{z} dz$ from z = 0 to z = 4 + 2ialong the curve C given by $z = t^2 + it$.
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) Show that the three cube roots of
 -8i lie at the vertices of an equilateral triangle that is inscribed in a circle of radius 2 centred at the origin.
 - (b) Prove that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.
 - (c) If f'(z) = 0 everywhere in a domain D, then prove that f(z) must be constant throughout D.
 - (d) Suppose that a function f(z) is analytic at a point $z_0 = z(t_0)$ on a differentiable arc $z = z(t)(a \le t \le b)$. Show that if w(t) = f(z(t)) then w'(t) = f'(z(t))z'(t) when $t = t_0$.

PAN J

- (e) Using anti-derivative, evaluate the integral $\int_{c}^{z^{1/2}} dz$, where C is a contour from z=-3 to z=3 that, except for its end points, lies above the x-axis.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) If z_0 and w_0 are points in the z and w planes respectively, then prove that
 - (A) $\lim_{z \to z_0} f(z) = \infty$ if and only if

$$\lim_{z \to z_0} \frac{1}{f(z)} = 0 \text{ and }$$

(B) $\lim_{z\to\infty} f(z) = w_0$ if and only if

$$\lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$
 5

(ii) Let u and v denote the real and imaginary components of the function f defined by the equations:

$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & \text{when } z \neq 0 \\ 0, & \text{when } z = 0 \end{cases}$$

Verify the Cauchy-Riemann equations at the origin z = (0,0).

- (b) (i) Show that sin(x+iy) = sin x cosh y + i cos x sinh y.
 - (ii) Find numbers z = x + iy such that $e^z = 1 + i$.
 - (iii) Show that if a function f(z) = u(x,y) + iv(x,y) and its conjugate $\overline{f(z)}$ are both analytic in a domain D, then f(z) must be constant throughout D.
- (c) (i) Show that the zeros of sin z are all real.
 - (ii) Evaluate $\int_{0}^{\pi/4} e^{it} dt$. 3
 - (iii) If $w = f(z) = \frac{1+z}{1-z}$ find $\frac{dw}{dz}$ and determine where f(z) is not analytic.

(d) (i) If w(t) is a piecewise continuous complex valued function defined on an interval $a \le t \le b$, then show

that
$$\left| \int_{a}^{b} w(t) dt \right| \le \int_{a}^{b} w(t) dt$$
 5

(ii) Let C denote the line segment from z = i to z = 1. By observing that of all the points on that line segment, the midpoint is the closest to the

origin, show that $\left| \int_{c} \frac{dz}{z^4} \right| \le 4\sqrt{2}$, without evaluating the integral.

(e) (i) Show that

$$\int \frac{dz}{z^2 + a^2} = \frac{1}{a} tan^{-1} \frac{z}{a} + C_1 = \frac{1}{2ai} ln \left(\frac{z - ai}{z + ai} \right) + C_2$$

(ii) Evaluate:

$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz, \qquad 5$$

where C is the circle |z| = 3.

- (f) (i) Prove that if a function f is analytic at a given point, then its derivatives of all orders are also analytic at that point.
 - (ii) Let C denote the positively oriented boundary of a square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate

$$\int_{C} \frac{\tan(z/2)}{(z-x_0)^2} dz \ (-2 < x_0 < 2).$$
 5

3 (Sem-5/CBCS) MAT HC 2

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) Give reason why a line in \mathbb{R}^2 not passing through the origin is not a subspace of \mathbb{R}^2 .

(b) Express
$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

as span of two vectors.

Contd.

(c) State whether the fallowing statement is true or false:

"A finite dimensional vector space has exactly one basis."

- (d) Find the dimension of the subspace of all vectors in \mathbb{R}^3 whose first and third entries are equal.
- (e) 0 is an eigenvalue of a matrix A if and only if A is _____. (Fill in the blank)
- (f) When is a square matrix said to be diagonalizable?
- (g) Write the kernel of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x,y,z) = (x,0,z).

(h) If
$$u = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$$
 and $v = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$,

then compute u.v.

(i) What is the distance between the vectors $\vec{u} = (7,1)$ and $\vec{v} = (3,2)$ in the \mathbb{R}^2 plane?

2

- (j) What do you mean by orthogonal vectors in an inner product space?
- 2. Answer the following questions: $2 \times 5 = 10$

(a) Let
$$A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$$
 and $w = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Determine if w is in null space of A.

(b) Let P₃ be the vector space of all polynomials of degree atmost 3.Are the vectors

$$p(t) = 1 + t^2$$
 and $q(t) = 1 - t^2$ linearly independent in \mathbb{P}_3 ? Justify your answer.

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 4 & -3 \end{bmatrix}$$

(d) Let $\mathcal{B} = \{b_1, b_2, b_3\}$ be a basis for a vector space V and $T: V \to \mathbb{R}^2$ be a linear transformation such that

$$T(x_1b_1 + x_2b_2 + x_3b_3) = \begin{bmatrix} 2x_1 - 4x_2 + 5x_3 \\ -x_2 + 3x_3 \end{bmatrix}.$$

Find the matrix for T relative to B.

3

- (e) Let v=(1,-2,2,0) be a vector in \mathbb{R}^4 . Find a unit vector u in the same direction as v.
- 3. Answer any four questions: 5×4=20
 - (a) If a vector space V has a basis $\mathcal{B} = \{b_1, b_2, ..., b_n\}$, then prove that any set in V containing more than n vectors must be linearly dependent.

(b) Let
$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ and $x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
 $3+2=5$

- (i) Show that the set $\mathcal{B} = \{b_1, b_2\}$ is a basis of \mathbb{R}^2
- (ii) Find the coordinate vector [x] of x relative to B.
- (c) Given that 2 is an eigenvalue of the

matrix
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$

Find a basis for the corresponding eigenspace.

(d) Prove that an $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

- (e) Compute the orthogonal projection of $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ onto the line through $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and the origin.
- (f) If $\{u, v\}$ is an orthonormal set in an inner product space v, then show that $||u v|| = \sqrt{2}$.

Answer either (a) or (b) from each of the following questions: $10\times4=40$

4. (a) Find the rank and the nullity of the matrix 10

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

(b) Let
$$b_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $c_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ 5+5=10

5

(i) Find the change-of-coordinates matrix from C to B

- Find the change-of-coordinates matrix from C to B
- (i) If $n \times n$ matrices A and B are similar, then show that they have the same characteristic polynomial. 3 .

(ii) If
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$
 then find an

invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$ 7

(i) Let $\mathcal{B} = \{b_1, b_2, b_3\}$ and $\mathcal{D} = \{d_1, d_2\}$ be bases for vector spaces y and W respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(b_1) = 3d_1 - 5d_2$$
, $T(b_2) = -d_1 + 6d_2$, $T(b_3) = 4d_2$.
Find the matrix for T relative to \mathcal{B} and \mathcal{D} .

6

- Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi(b \neq 0)$ and an associated eigenvector v in \mathbb{C}^2 . Show that A(Rev) = a Rev + b Imv and 5 A(Imv) = bRev + aImv
- 6. (a) Let, $\mathcal{B} = \left\{ \begin{array}{c|c} 2 & 4 \\ -5 & -1 \\ 1 & 2 \end{array} \right\}$ be a basis for a

subspace W of R3. Using the Gram-Schmidt process construct orthogonal basis for W. Hence, find an orthonormal basis.

8+2=10

(b) What do you mean by an inner product on a vector space V? Consider the inner product in \mathbb{R}^2 defined by $\langle u,v \rangle = 4u_1v_1 + 5u_2v_2$ where $u = (u_1, u_2), \ v = (v_1, v_2) \in \mathbb{R}^2$. If x = (1,1) and y = (5,-1), then find $\|x\|, \|y\|$ and $|\langle x,y \rangle|^2$. Also, show that in an inner product space V over \mathbb{R} , $\langle u,v \rangle = \frac{1}{4}\|u+v\|^2 - \frac{1}{4}\|u-v\|^2$, $\forall u,v \in V$.

7. (a) State Cayley-Hamilton theorem for matrices. Verify the theorem for the matrix. 2+6+2=10

$$M = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

and hence find M^{-1} .

(b) If possible, diagonalize the symmetric matrix 10

8

$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$