3 (Sem-4/CBCS) MAT HC 1

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4016

(Multivariate Calculus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed: 1×10=10
 - (a) If f(x, y) = ln(y-x), then find domain of it.
 - (b) Define level curve of a function f(x, y) at a constant C.
 - (c) Find f_x if $f(x, y) = (\sin x^2)\cos y$.

- (d) If $f(x, y) = \sin xy$, then df is
 - (i) $y\cos xy\,dx + x\cos xy\,dy$
 - (ii) $y\cos xy\,dy + x\cos xy\,dx$
 - (iii) $y\cos x dx + x\cos y dy$
 - (iv) $\cos xy \, dx + \cos xy \, dy$ (Choose the correct option)
- (e) Evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$ for the transformation $x = r\cos\theta$, $y = r\sin\theta$.
- (f) If $P_0(x_0, y_0)$ is a critical point of f(x, y) and f has continuous 2nd order partial derivatives in a disk centered at (x_0, y_0) and $D = f_{xx}f_{yy} f_{xy}^2$, then a relative minimum occurs at P_0 , if
 - (i) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) < 0$
 - (ii) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) > 0$
 - (iii) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) < 0$
 - (iv) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) > 0$ (Choose the correct option)

(i)
$$\left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right) i + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) j + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) k$$

(ii)
$$\left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) k$$

(iii)
$$\left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}\right) i + \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}\right) j + \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) k$$

(iv)
$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) i + \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}\right) j + \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}\right) k$$
(Choose the correct option)

- (h) Define work as a line integral.
- (i) State Green's theorem on a simply connected region D.
- (j) If a vector field F and curl F are both continuous in a simply connected region D on \mathbb{R}^3 , then F is conservative in D if curl $F \neq 0$. State whether this statement is true or false.

⁽g) The curl of a vector field V(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k is

2. Answer the following questions:

$$2 \times 5 = 10$$

(a) Show that the function f is continuous at (0,0) where

$$f(x, y) = \begin{cases} y \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(b) Compute the slope of the tangent line to the graph of $f(x, y) = x^2 \sin(x + y)$ at the point $P\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ in the direction parallel to the XZ plane.

- (d) Show that $\operatorname{div} F = 0$ and $\operatorname{curl} F = 0$, if F is a constant vector field.
- (e) Evaluate $\iint_{0}^{2} \int_{0}^{2} 8x^2yz^3dxdydz$.

- 3. Answer **any four** questions: 5×4=20
 - (a) (i) Find $\frac{\partial w}{\partial r}$ where $w = e^{2x-y+3z^2}$ and x = r + s t, y = 2r 3s, z = cosrst.
 - (ii) Show that $\lim_{(x, y)\to(0, 0)} \frac{x+y}{x-y}$ does not exist.
 - (b) (i) If f has a relative extremum at $P_0(x_0, y_0)$ and both f_x and f_y exist at (x_0, y_0) , then prove that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0.$ 2
 - (ii) Discuss the nature of the critical points of the function $f(x, y) = (x-2)^2 + (y-3)^4.$ 3
 - (c) Use a polar double integral to show that a sphere of radius a has volume $\frac{4}{3}\pi a^3$.

- (d) An object moves in the force field $F = y^2i + 2(x+1)yj$. How much work is performed as the object moves from the point (2,0) counterclockwise along the elliptical path $x^2 + 4y^2 = 4$ to (0,1), then back to (2,0) along the line segment joining the two points.
- (e) (i) Evaluate $\int_C (x^2 + y^2) dx + 2xy dy$ where C is the quarter circle $x^2 + y^2 = 1$ from (1, 0) to (0, 1).
 - (ii) A wire has the shape of the curve $x = \sqrt{2} \sin t$, $y = \cos t$, $z = \cos t$ for $0 \le t \le \pi$. If the wire has density $\delta(x, y, z) = xyz$ at each point (x, y, z), find its mass. 2
- Find the volume of the solid in the first octant that is bounded by the cylinder $x^2 + y^2 = 2y$, the half cone $z = \sqrt{x^2 + y^2}$ and the xy-plane.

- 4. Answer the following questions: 10×4=40
 - (a) (i) Let f(x, y) be a function that is differentiable at $P_0(x_0, y_0)$. Prove that f has a directional derivative in the direction of the unit vector $u = u_1 i + u_2 j$ given by

$$D_u f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

- (ii) Find the directional derivative of $f(x, y) = ln(x^2 + y^2)$ at $P_0(1, -3)$ in the direction of v = 2i 3j using the gradient formula.
- (iii) Find the equations of the tangent plane and the normal line to the cone $z^2 = x^2 + y^2$ at the point where x = 3, y = 4 and z > 0.

OR

(i) Prove that if f(x, y) is differentiable at (x_0, y_0) , then it is continuous there.

- (ii) When two resistances R_1 and R_2 are connected in parallel, the total resistance R satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 is measured as 300 ohms with a maximum error of 2% and R_2 is measured as 500 ohms with a maximum error of 3%, then find the maximum percentage error in R.
- (b) (i) Use the method of Lagrange multipliers to minimize $f(x, y) = x^2 xy + 2y^2 \text{ subject to}$ 2x + y = 22.
 - (ii) Find all relative extrema and saddle points on the graph of $f(x, y) = x^2y^4$.

OR

(i) Find the absolute extrema of the function $f(x, y) = e^{x^2 - y^2}$ over the disk $x^2 + y^2 \le 1$.

- (ii) Suppose E be an extreme value of f subject to the constraint g(x,y)=C. Prove that the Lagrange multiplier λ is the rate of change of E with respect to C.
- (c) (i) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} y \sqrt{x^2 + y^2} \, dy \, dx$ by converting to polar coordinates.
 - (ii) Evaluate $\iint_D e^z dv$ where D is the region described by the inequalities $0 \le x \le 1$, $0 \le y \le x$ and $0 \le x \le x + y$.

OR

(i) Find the volume of the solid bounded above by the plane z = y and below in the xy-plane by the part of the disk $x^2 + y^2 \le 1$ in the 1st quadrant.

- Evaluate: $\iiint x \, dV$ where D is the solid in the 1st octant bounded by the cylinder $x^2 + y^2 = 4$ and the plane 2y + z = 4.
- (d) Let C be a piecewise smooth curve (i) that is parameterized by a vector function R(t) for $a \le t \le b$ and let F be a vector field that is continuous on C. If f is a scalar function such that $F = \nabla f$, then prove that $\int_C F \cdot dR = f(Q) - f(P)$ where Q = R(b) and P = R(a) are the end points of C. Using it evaluate the line integral $\int F.dR$, where $F = \nabla (e^x \sin y - xy - 2y)$ and C is

the path described by

$$R(t) = \left[t^3 \sin \frac{\pi}{2}t\right] i - \left[\frac{\pi}{2} \cos \left(\frac{\pi}{2}t + \frac{\pi}{2}\right)\right] j$$
for $0 \le t \le 1$

$$5 + 3 = 8$$

Determine whether the vector field $F(x, y) = \frac{(y+1)i - xj}{(y+1)^2}$ is conservative.

OR

- Evaluate $\oint_C \left(\frac{1}{2} y^2 dx + z dy + x dz \right)$ where C is the curve of intersection of the plane x+z=1 and the ellipsoid $x^2 + 2y^2 + z^2 = 1$, oriented counterclockwise as viewed from above. 6
- Evaluate $\iint F.NdS$ where

 $F = x^2i + xyj + x^3y^3k$ and S is the surface of the tetrahedron bounded by the plane x + y + z = 1and the coordinate planes with outward unit normal vector N.

3 (Sem-4/CBCS) MAT HC2

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4026

(Numerical Methods)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Name the three basic components of an algorithm.
 - (b) Show $\nabla E \equiv \Delta$.
 - (c) Write down the Lagrangian linear interpolation formula at the points x_0 and x_1 with corresponding function values f_0 and f_1 .

- (d) What is the order of convergence of secant method?
- (e) The approximation formula for finding the derivative at x_0 given by

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi),$$

$$x_0 < \xi < x_{0+h}$$

is a

- (i) backward difference approximation formula of first order of approximation
- (ii) forward difference approximation formula of second order of approximation
- (iii) forward difference approximation formula of first order of approximation
- (iv) None of the above (Choose the correct option)
- (f) What is numerical integration? What is its general form?
- (g) Name a method for approximating a solution to an initial value problem.

- 2. Answer the following questions: $2\times4=8$
 - (a) Compute the following limit and determine the rate of convergence $\lim_{x\to 0} \frac{e^x 1}{x}.$
 - (b) Prove $(I + \Delta)(I \nabla) \equiv I$.
 - (c) Show that LU decomposition of a matrix is unique up to scaling by a diagonal matrix.
 - (d) Find the approximate value of $\int_{0}^{1} \frac{dx}{1+x}$ by Simpson's rule.
- 3. Answer any three:

5×3=15

(a) Construct an iteration function corresponding to the given function $f(x) = x^3 - x^2 - 10x + 7.$

3

Use the fixed point iteration scheme with initial approximation as $P_0 = 1$ and perform three iterations to approximate the root of f(x) = 0.

(b) Using the data given below form the divided difference table and use it to construct the Newton form of the interpolating polynomial:

$$x -1 0 1 2$$

 $y 5 1 1 11$

(c) Use four iterations of Newton's method to approximate the root of the equation

$$f(x) = x^3 + 2x^2 - 3x - 1$$

in the interval (1, 2) starting with an initial approximation of $P_0 = 1$.

(d) Derive the second order central difference approximation for first derivative including error term given by

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f'''(\xi)$$

- (e) (i) Name the measures by which errors are quantified. Write down the expressions for the same.
 - (ii) Prove that $\Delta^n f(x_i) = (E I)^n f(x_i)$

4. Answer any three:

10×3=30

- (a) What is Theoretical Error Bound? Show that the Bisection Method for approximating a root of the equation f(x) = 0 always converges. Find the order of convergence of the Bisection Method. 1+6+3=10
- (b) Verify that the equation $x^3 + x^2 3x 3 = 0$ has a root in the interval (1, 2). Given that the exact root is $x = \sqrt{3}$, perform the first three iterations of the Regula-Falsi method. What is the computable estimate for $|e_n|$, the error obtained in nth step by this method. Verify that the absolute error in the third approximation satisfies the error estimate. 1+6+3=10
- (c) What is an interpolating polynomial? Determine the interpolation error when a function is approximated by a constant polynomial. Mention an advantage and a disadvantage of Lagrangian form of the interpolating polynomial. Derive the Lagrangian interpolating polynomial for the given data:

 1+2+2+5=10

(d) What are two different classes of methods for solving a linear system of equations. Name one method of each type. What do you mean by an LU decomposition of square matrix A.

Solve the following system using LU decomposition: 1+1+8=10

$$2x_1 + 7x_2 + 5x_3 = -4$$
$$6x_1 + 20x_2 + 10x_3 = -16$$
$$4x_1 + 3x_2 = -7$$

- (e) (i) Derive the basic Trapezoidal rule for integrating $\int_a^b f(x)dx$.
 - (ii) Use appropriate first order approximation formulas to find derivatives of the values of f(x) at the points x = 0.5, x = 0.6 and x = 0.7.

X	f(x)	f'(x)
0.5	0.4794	?
0.6	0.5646	5.
0.7	0.6442	

(f) What is the basic problem that is solved by Euler's method? Derive Euler's method. Given that the exact solution

to $\frac{dx}{dt} = \frac{t}{x}$ is $x(t) = \sqrt{t^2 + 1}$, find the absolute error at each step that is obtained by solving

$$\frac{dx}{dt} = \frac{t}{x}$$
, $0 \le t \le 1.0$, $x(0) = 1$, $h = 0.5$

7

by Euler's method. 1+4+5=10

3 (Sem-4/CBCS) MAT HC3

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4036

(Ring Theory)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) Give an example to show that for two non-zero elements a and b of a ring R, the equation ax = b can have more than one solution.
 - (b) How many nilpotent elements have in an integral domain?

- (c) Which of the following statements is not true?
 - (i) $\langle 5 \rangle$ is a prime ideal of Z.
 - (ii) $\langle 5 \rangle$ is a maximal ideal of Z.
 - (iii) $\langle 5 \rangle$ is a maximal ideal of Z_{20}
 - (iv) $\frac{Z}{5Z}$ is an integral domain.
- (d) Define prime ideal of a ring.
- (e) Give example of a commutative ring without zero divisor that is not an integral domain.
- (f) Consider the polynomial $f(x) = 4x^3 + 2x^2 + x + 4$ and $g(x) = 3x^4 + 3x^3 + 3x^2 + x + 4$ in Z_5 . Compute f(x) + g(x).
- (g) Write $f(x) = x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$ as a product of irreducible polynomial over \mathbb{Z}_2 .

(h) Which of the following is a primitive polynomial?

(i)
$$2x^3 + 4x^2 + 6x + 10$$

(ii)
$$5x^2 - 30x - 20$$

(iii)
$$2x^4 + 3x^3 + 5x^2 - 7x + 11$$

(iv)
$$3x^2 - 3x + 3$$

(i) State whether the following statement is true or false:

"A polynomial f(x) in Z[x] which is reducible over Z is also reducible over Q."

- (i) Choose the correct statement:
 - Every Euclidean domain is a unique factorization domain.
 - (ii) Every principal ideal domain is a Euclidean domain.
 - (iii) Every unique factorization domain is a Euclidean domain.
 - (iv) Every unique factorization domain is a principal ideal domain.

- 2. Answer the following questions: 2×5=10
 - (a) If a and b are two idempotents in a commutative ring, then show that a+b-ab is also an idempotent element.
 - (b) Show that every non-zero element of Z_n is a unit or a zero divisor.
 - (c) Show that every ring homomorphism $f: Z_n \to Z_n$ is of the form f(x) = ax where $a = a^2$.
 - (d) Find the zeros of $f(x) = x^2 + 3x + 2$ in Z_6 .
 - (e) Let D be an integral domain and $a,b \in D$. If $\langle a \rangle = \langle b \rangle$, then show that a and b are associates.
- 3. Answer **any four** questions: 5×4=20
 - (a) The operations \oplus and \otimes defined on the set Z of integers by $a \oplus b = a + b 1$ and $a \otimes b = a + b ab$. Show that (Z, \oplus, \otimes) is a ring with unity.
 - (b) Find all ring homomorphism from $Z \oplus Z$ to Z.

- (c) Let R be a commutative ring with unity. Show that an ideal A of R is prime if and only if the quotient ring $\frac{R}{A}$ is an integral domain.
- (d) Define principal ideal domain. Show that if F is a field, then F[x] is a principal ideal domain. 1+4=5
- (e) Show that every Euclidean domain is a principal ideal domain.
- (f) Show that the number of reducible polynomials over Z_p of the form $x^2 + ax + b$ is $\frac{p(p+1)}{2}$.
- 4. Answer the following questions: 10×4=40
 - (a) (i) Let R be a commutative ring with unity. Show that the set

$$R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 / a_i \in R,$$

n is a non-negative integer} is a ring. Also show that if R is an integral domain, then R[x] is also an integral domain. 5+2=7

(ii) Let
$$f(x) = 5x^4 + 3x^3 + 1$$
 and $g(x) = 3x^2 + 2x + 1$ in $Z_7[x]$.

Determine the quotient and remainder upon dividing $f(x)$ by $g(x)$.

Or

(i) Show that $Z \left| \sqrt{2} \right| = \left\{ a + b\sqrt{2} : a, b \in Z \right\} \text{ and }$ $H = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} / a, b \in Z \right\}$

are isomorphic as ring. 4

- (ii) If a, b be any two ring elements and m and n be any two integers, then show that (m.a)(n.b) = (mn).(ab) 6
- (b) (i) Define maximal ideal of a ring. Let A be an ideal of a commutative ring with unity R. Prove that $\frac{R}{A}$ is a field if and only if A is maximal. 1+6=7

(ii) Let R be a commutative ring and A be any subset of R. Show that the nil-radical of A,

 $N(A) = \{ r \in R / r^n \in A \text{ for some } n \in N \}$ is an ideal of R.

Or

- (i) Let φ be a ring homomorphism from R to S. Then the mapping $\frac{R}{\ker(\varphi)} \text{ to } \varphi(R), \text{ given by } r + \ker(\varphi) \to \varphi(r) \text{ is an }$ isomorphism, i.e., $\frac{R}{\ker(\varphi)} \approx \varphi(R)$.
- (ii) Let ϕ be a ring homomorphism from a ring R to a ring S. Let B be an ideal of S. Then $\phi^{-1}[B] = \{r \in R : \phi(r) \in B\}$ is an ideal of R.
- (c) If F is a field and $p(x) \in F[x]$, then prove that $\frac{F[x]}{\langle p(x) \rangle}$ is a field if and only if p(x) is irreducible over F.

Let F be a field. If $f(x) \in F[x]$ and degree f(x) is 2 or 3, then f(x) is reducible over F if and only if f(x) has a zero in F. Is the result true when degree f(x) is greater then 3? Justify.

7+3=10

In a principal ideal domain, show that (d) an element is irreducible if and only if it is prime. Use this result to show that $Z[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in Z\}$ is not a principal ideal domain.

- In a principal ideal domain, show (i) that any strictly increasing chain of ideals $I_1 \subset I_2 \subset ...$ must be finite in length.
- Let ϕ be a onto ring (ii) homomorphism from a ring R to a ring S. Then prove that ϕ is an isomorphism if and only if $\ker(\phi) = \{0\}.$ 3
- Determine all ring homomorphism from the ring of integers Z to itself.