Total number of printed pages-16

3 (Sem-5/CBCS) MAT HC 1 (N/O)

2023

MATHEMATICS

(Honours Core)

OPTION-A (For New Syllabus)

Paper: MAT-HC-5016

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Which point on the Riemann sphere represents ∞ of the extended complex plane C∪{∞}?
 - (b) A set $S \subseteq \mathbb{C}$ is closed if and only if S contains each of its _____ points.

 (Fill in the gap)

Contd.

- (c) Write down the polar form of the Cauchy-Riemann equations.
- (d) The function $f(z) = \sinh z$ is a periodic function with a period ______.

 (Fill in the gap)
- (e) Define a simple closed curve.
- (f) Write down the value of the integral $\int_C f(z) dz$, where $f(z) = ze^{-2}$ and C is the circle |z| = 1.
- (g) Find $\lim_{n\to\infty} z_n$, where $z_n = -1 + i\frac{(-1)^n}{n^2}$.
- 2. Answer the following questions: 2×4=8
 - (a) Let $f(z) = i\frac{z}{2}$, |z| < 1. Show that $\lim_{z \to 1} f(z) = \frac{i}{2}$, using $\varepsilon \delta$ definition.
 - (b) Show that all the zeros of sinhz in the complex plane lie on the imaginary axis.

- (c) Evaluate the contour integral $\int_C \frac{dz}{z}, \text{ where } C \text{ is the semi circle}$ $z = e^{i\theta}, \quad 0 \le \theta \le \pi$
- (d) Using Cauchy's integral formula, evaluate $\int_C \frac{e^{2z}}{z^4} dz$, where C is the circle |z| = 1.
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) Find all the fourth roots of -16 and show that they lie at the vertices of a square inscribed in a circle centered at the origin.
 - (b) Suppose f(z)=u(x,y)+iv(x,y), (z=x+iy) and $z_0=x_0+iy_0$, $w_0=u_0+iv_0$. Then prove the following:

$$\lim_{(x, y) \to (x_0, y_0)} u(x, y) = u_0,$$

$$\lim_{(x, y) \to (x_0, y_0)} v(x, y) = v_0, \text{ if and only}$$

$$\lim_{z \to z_0} f(z) = w_0.$$

- (c) (i) Show that the function f(z) = Rez is nowhere differentiable.
 - (ii) Let $T(z) = \frac{az+b}{cz+d}$, where $ad-bc \neq 0$. Show that $\lim_{z \to \infty} T(z) = \infty$ if c = 0.
- (d) Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Show that

$$\left| \int_C \frac{z+4}{z^3-1} \, dz \right| \le \frac{6\pi}{7}$$

- (e) State and prove fundamental theorem of algebra.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) Show that $exp(z+\pi i) = -exp(z)$
 - (ii) Show that $\log(-1+i)^2 \neq 2\log(-1+i)$ 2

- (iii) Show that $|\sin z|^2 = \sin^2 x + \sinh^2 y$
- (iv) Show that a set $S \subseteq \mathbb{C}$ is unbounded if and only if every neighbourhood of the point at infinity contains at least one point of S.
- (b) (i) Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$, $g'(z_0)$ exist with $g'(z_0) \neq 0$. Using the definition of derivative show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

- Show that $z^2 e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^n,$ where $|z| < \infty$.
- (c) State and prove Laurent's theorem.
- (d) (i) Using definition of derivative, show that $f(z) = |z|^2$ is nowhere differentiable except at z = 0. 5

5

(ii) Define singular points of a function. Determine singular points of the functions:

$$f(z) = \frac{2z+1}{z(z^2+1)};$$

$$g(z) = \frac{z^3 + i}{z^2 - 3z + 2}$$
 1+4=5

- (e) (i) Let f(z) = u(x, y) + iv(x, y) be analytic in a domain D. Prove that the families of curves $u(x, y) = c_1$, $v(x, y) = c_2$ are orthogonal.
 - (ii) Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is a non-negative constant such that

 $|f(z)| \le M$ for all z in C then show that

$$\left| \int_C f(z) dz \right| \leq ML. \qquad 5+5=10$$

- (f) (i) Prove that two non-zero complex numbers z_1 and z_2 have the same moduli if and only if $z_1 = c_1 c_2$, $z_2 = c_1 \overline{c}_2$, for some complex numbers c_1, c_2 .
 - (ii) Show that mean value theorem of integral calculus of real analysis does not hold for complex valued functions w(t).
 - (iii) State Cauchy-Goursat theorem.
 - (iv) Show that $\lim_{z\to\infty}\frac{z^2+1}{z-1}=\infty$. 2

OPTION-B (For Old Syllabus)

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions: 1×10=10

- (a) Write the statement of the First Fundamental Theorem of Calculus.
- (b) Evaluate $\int_0^\infty e^{-x} dx$, if it exists.
- (c) Prove that $\Gamma(1)=1$.
- (d) Define a complete metric space.
- (e) Describe an open ball in the discrete metric space (X, d).
- (f) $(A \cup B)^0$ need not be $A^0 \cup B^0$ Justify it where A and B are subsets of a metric space (X, d).
- (g) Find the derived sets of the intervals (0,1) and [0,1].

(h) Let A and B be two subsets of a metric space (X, d). Which of the following is not correct?

(i)
$$A \subseteq B \Rightarrow A' \subseteq B'$$

(ii)
$$(A \cap B)' \subseteq A' \cap B'$$

(iii)
$$A' \cap B' \subset (A \cap B)'$$

(iv)
$$(A \cup B)' = A' \cup B'$$

(i) The Euclidean metric on \mathbb{R}^n is defined as

(i)
$$d(x, y) = \left\{ \sum_{i=1}^{n} (x_i - y_i)^2 \right\}^{\frac{1}{2}}$$

(ii)
$$d(x, y) = \left\{ \sum_{i=1}^{n} |x_i - y_i|^p \right\}^{\frac{1}{p}}$$
where $p \ge 1$

(iii)
$$d(x, y) = \max_{1 \le i \le n} |x_i - y_i|$$

(iv)
$$d(x, y) = \sup_{1 \le i \le n} |x_i - y_i|$$

where
$$x = (x_1, x_2, \dots x_n)$$

 $y = (y_1, y_2, \dots y_n)$

are any two points in \mathbb{R}^n .

(Choose the correct answer)

- (j) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be continuous on X. Then for any $B \subseteq Y$.
 - (i) $f^{-1}(\overline{B}) \subset \overline{f^{-1}(B)}$
 - (ii) $\widehat{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$
 - (iii) $\overline{f(B)} \subset f(\overline{B})$
 - (iv) $f(\overline{B}) \subset \overline{f(B)}$ (Choose the correct answer)
- 2. Answer the following questions: 2×5=10
 - (a) Let f(x) = x on [0,1] and

$$P = \left\{ x_i = \frac{i}{4}, i = 0, 1, \dots, 4 \right\}$$

Find L(f, P) and U(f, P).

(b) Let $f: [0, a] \to \mathbb{R}$ be given by $f(x) = x^2$. Find

$$\int_{0}^{a} f(x) dx$$

- (c) Let (X, d) be a metric space and A, B be subsets of X. Prove that $(A \cap B)^0 = A^0 \cap B^0$.
- (d) If A is a subset of a metric space (X, d), prove that $d(A) = d(\overline{A})$.
- (e) Let (X, d_X) and (Y, d_Y) be two metric spaces. Prove that if a mapping $f: X \to Y$ is continuous on X, then $f^{-1}(G)$ is open in X for all open subsets G of X.
- 3. Answer any four parts:

- (a) Prove that $f(x) = x^2$ on [0,1] is integrable.
- (b) Show that $\lim_{n\to\infty}\sum_{n=1}^{\infty}\frac{r}{r^2+n^2}=\log\sqrt{2}$
- (c) Let (X, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by

11

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)} \text{ for all } x, y \in X. \text{ Prove that } d' \text{ is a metric}$$

on X.

- (d) Let X = c[a, b] and $d(f, g) = \sup\{|f(x) g(x)| : a \le x \le b\}$ be the associated metric where $f, g \in X$. Prove that (X, d) is a complete metric space.
- (e) Let (X, d) be a metric space. Prove that a finite union of closed sets is closed.
 Infinite union of closed sets need not to closed Justify it. 3+2=5
- (f) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be uniformly continuous. If $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X, prove that $\{f(x_n)\}_{n\geq 1}$ is a Cauchy sequence in Y.
- 4. Answer **any four** parts: 10×4=40

12

- (a) (i) Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that f is integrable. 5
 - (ii) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values at p.

(b) (i) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b]. Prove that there exists $c \in [a,b]$ such that $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$ Using it prove that for -1 < a < 0 and $n \in \mathbb{N}$,

$$S_n = \int_a^0 \frac{x^n}{1+x} dx \to 0 \text{ as } n \to \infty$$

3+2=5

(ii) Let $f:[a,b] \to \mathbb{R}$ be monotone. Prove that there exists $c \in [a,b]$ such that

$$\int_{a}^{b} f(x) dx = f(a)(c-a) + f(b)(b-c)$$

- (c) (i) Prove that a convergent sequence in a metric space is a Cauchy sequence.

 Show that in the discrete metric space every Cauchy sequence is convergent.

 3+2=5
 - (ii) Define an open set in a metric space (X, d).
 Prove that in any metric space (X, d), each open ball is an open set.

- (d) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open in X.
 - (ii) Let (X, d) be a metric space and Y a subspace of X. Let Z be a subset of Y. Prove that Z is open in Y if and only if there exists an open set $G \subseteq X$ such that $Z = G \cap Y$.
- (e) (i) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
 - (ii) Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(F)$ is closed in X for all closed subsets F of Y.

- (f) (i) Show that the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.
 - (ii) Let (X, d) be a metric space and let $x \in X$ and $A \subseteq X$ be non-empty. Prove that $x \in A$ if and only if d(x, A) = 0.
- (g) (i) Define a connected set in a metric space. Prove that if Y is a connected set in a metric space (X, d), then any set Z such that $Y \subseteq Z \subseteq \overline{Y}$, is connected. 1+4=5
 - (ii) Let (X, d) be a metric space. Prove that the following statements are equivalent:
 - (a) (X, d) is disconnected
 - (b) there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) .

(h) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset I of \mathbb{R} is connected if and only if I is an interval.

3 (Sem-5/CBCS) MAT HC 2

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed: $1 \times 10=10$

(a) Let
$$A = \begin{pmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{pmatrix}$$
 and $\vec{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

Check whether \vec{u} is in null space of A.

- (b) Define subspace of a vector space.
- (c) Give reason why \mathbb{R}^2 is not a subspace of \mathbb{R}^3

- (d) State whether the following statement is true or false:
 "If dimension of a vector space V is p>0 and S is a linearly dependent subset of V, then S contains more than p elements."
- (e) If \vec{x} is an eigenvector of A corresponding to the eigenvalue λ then what is $A^3\vec{x}$?
- When two square matrices A and B are said to be similar?
- (g) If $\vec{v} = (1 2 \ 2 \ 4)$ then find $||\vec{v}||$.
- (h) Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} 8/3 \\ 2 \end{bmatrix}.$
- (i) Under what condition two vectors \vec{u} and \vec{v} are orthogonal to each other?
- (j) Define orthogonal complement of vectors.
- 2. Answer the following questions: 2×5=10
 - (a) Show that the set $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$ is not a subspace of \mathbb{R}^2 .

- (b) Let $\vec{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\beta = \{b_1, b_2\}$. Find the coordinate vector $[x]_{\beta}$ of \vec{x} relative to β .
- (c) Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$.
- (d) Let P_2 be the vector space of all polynomials of degree less than equal to 2. Consider the linear transformation $T: P_2 \to P_2$ defined by $T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$. Find the matrix representation $[T]_{\beta}$ of T with respect to the base $\beta = \{1, t, t^2\}$.
- (e) Show that the matrix $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$

has orthogonal columns.

3

- 3. Answer any four questions: 5×4=20
 - (a) Let $S = \{v_1, v_2, ..., v_p\}$ be a set in the vector space V and H = span(S). Now if one of the vector in S, say v_k , is linear combination of the other vectors in S, then show that S is linearly dependent and the subset of $S_1 = S \{v_k\}$ still span H. 2+3=5
 - (b) Show that the set of all eigenvectors corresponding to the distinct eigenvalues of a $n \times n$ matrix A is linearly independent.
 - (c) Let W be a subspace of the vector space V and S is a linearly independent subset of W. Show that S can be extended, if necessary, to form a basis for W and $dim W \leq dim V$.

(d) If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
. Find an

invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(e) If $\vec{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$ then find the orthogonal projection of \vec{y} onto \vec{u} and write \vec{y} as the sum of two orthogonal vectors, one in $span\{\vec{u}\}$ and the other orthogonal to \vec{u} .

(f) If
$$W = span\{x_1, x_2\}$$
 where $x_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$,
$$x_2 = \begin{bmatrix} \frac{1}{3}\\ \frac{1}{3}\\ -\frac{2}{3} \end{bmatrix}$$
, find a orthogonal basis for W .

Answer either (a) or (b) from each of the following questions: 10×4=40

4. (a) Find a spanning set for the null space of the matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Is this spanning set linearly independent?

5

8+2=10

- (b) (i) If a vector space V has a basis of n vectors, then show that every basis of V must consist of exactly n vectors.
 - (ii) Find a basis for column space of the following matrix: 6

$$B = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

5. (a) Define eigenvalue and eigenvector of a matrix. Find the eigenvalues and corresponding eigenvectors of the

$$matrix \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}. 2+8=10$$

- (b) Let T be a linear operator on a finite dimensional vector space V and let W denote the T-cyclic subspace of V generated by a non-zero vector $v \in V$. If dim(W) = k then show that
 - (i) $\{v, T(v), T^2(v), \dots, T^{k-1}(v)\}$ is a basis for W.

$$a_0v + a_1T(v) + ... + a_{k-1}T^{k-1}(v) + T^k(v) = 0$$
,
then the characteristics polynomial
of T_w is

$$f(t) = (-1)^{k} \left(a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k \right).$$
6+4=10

- 6. (a) (i) Define orthogonal set of vectors. Let $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n , then show that S is linearly independent. 1+4=5
 - (ii) For any symmetric matrix show that any two eigenvectors from different eigenspaces are orthogonal. 5
 - (b) Define inner product space. Show that the following is an inner product in \mathbb{R}^2 $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$

7

Where $u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{R}^2$ Also, show that in any inner product space V,

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||, \quad \forall u, v \in V.$$

$$2+4+4=10$$

7. (a) (i) Consider the bases
$$\beta = \{b_1, b_2\}$$

and $\gamma = \{c_1, c_2\}$ for \mathbb{R}^2 where

$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$

and
$$c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$$
, find the change of coordinate matrix from γ to β and from β to γ .

(ii) Compute A¹⁰ where

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}.$$

(b) State Cayley-Hamilton theorem for matrices. Verify the theorem for the matrix $M = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and hence find

$$M^{-1}$$
.