3 (Sem-6/CBCS) PHY HC 1

2023 PHYSICS

(Honours Core)

Paper: PHY-HC-6016

(Electromagnetic Theory)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer all the seven questions: 1×7=7
 - (a) What do you mean by isotropic medium?
 - (b) What is a half wave plate?
 - (c) Write the expression for Lorentz gauge.
 - (d) How is refractive index related with dielectric constant?
 - (e) Write momentum of a photon in terms of its frequency.
 - (f) Write down the intrinsic impedance for free space.

- (g) What is cladding in di-electric waveguide?
- 2. Answer the following questions: 2×4=8
 - (a) What is Nicol prism? Draw a neat diagram of it.
 - (b) Find numerical aperture of a step index fibre.
 - (c) Calculate the Skin depth for an EM wave of frequency 100 MHz in copper. Given, conductivity for $Cu = 6.25 \times 10^7 \, mho/m \text{ and}$ $\mu_0 = 4\pi \times 10^{-7} \, \text{henry/meter}$
 - (d) Find expression of electric field in terms of scaler and vector potentials.
- 3. Answer any three questions: 5×3=15
 - (a) Using the concept of displacement current density, derive the expression for EM wave in free space.
 - (b) Show that EM waves are transverse in nature.
 - (c) How will you use Babinet's compensator to analyse polarisation of light?

- (d) Explain the terms Levo-rotatory and Dextro-rotatory. A 15 cm tube containing sugar solution of sp. rotation 66° shows optical rotation 7°. Find strength of the solution. 1+1+3=5
- (e) What is a dielectric waveguide? Find the condition of internal reflection at the two boundaries of the waveguide.

 2+3=5
- 4. Answer **any three** of the following: 10×3=30
 - (a) Derive the expression for EM energy flux coming out of a surface. What is the significance of Poynting vector?

 8+2=10
 - (b) (i) Derive the expression for total internal reflection using EM wave equation where \vec{E} is parallel to the plane of incidence.
 - (ii) An EM wave in free space has electric field given by $\vec{E} = 20 \cos(3y + 4z 0.5ct) \hat{i}$ What is its propagation vector? Given $c = 3 \times 10^8 \, m/sec$. 8+2=10

- (c) Using Fresnel equations, show that the amplitude reflection coefficient for \vec{E} parallel to the plane of incidence is equal to zero if sum of angle of incidence and polarising angle is $\frac{\pi}{2}$ and hence derive Brewster's law. Also sketch the variation of amplitude reflection co-efficients for both perpendicular and parallel components of \vec{E} .
- (d) What is meant by rotatory polarisation?

 Describe the theory and working of
 Laurent's half-shade polarimeter.

 2+3+5=10
- (e) Equations of two electric field vectors oscillating in perpendicular direction are given by $\bar{E}_1 = \hat{i} \, a_1 \cos (kz \omega t)$ and $\bar{E}_2 = \hat{j} \, a_2 \cos (kz \omega t + \theta)$, assuming time variation of the resultant field at z = 0, find the state of polarisation (SOP) of the resultant at different values of θ .
- (f) Using Maxwell's equation, derive the Fresnel's wave equation in anisotropic medium.

3 (Sem-6/CBCS) PHY HC 2

2023

PHYSICS

(Honours Core)

Paper: PHY-HC-6026

(Statistical Mechanics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What is the number of microstates if 8 distinguishable particles are distributed in two compartments?
 - (b) What is ensemble in statistical mechanics?
 - (c) Define phase space.
 - (d) What is the importance of Kirchhoff's law of radiation?
 - (e) Give one example of bosons.

- (f) What is Chandrasekhar mass limit?
- (g) Under what condition quantum statistics approaches the classical statistics?
- 2. Answer the following questions: 2×4=8
 - (a) Write two properties of thermal radiation.
 - (b) Black body radiation is white. Explain.
 - (c) To what temperature must an ideal black body be raised in order to double the total radiation if original temperature is 127 °C?
 - (d) Write one similarity and one difference between B-E and F-D statistics.
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) State law of equipartion of energy. Using this law find an expression of the ratio of two specific heat of a gas. 1+4=5
 - (b) 6 distinguishable particles are to be arranged in 3 compartments of a box. Find the total number of microstates corresponding to the macrostate (0,2,4) and (2,3,1). [There is no restriction of number of particles that can go into any compartment].

- (c) In a metal there are 3.14×10^{27} free electrons per cubic metre. Calculate the Fermi energy.
- (d) Write a note on Bose-Einstein condensation.
- (e) Write the Saha's ionisation formula.
 Write the assumptions considered to derive the formula.

 2+3=5
- 4. Answer the following: 10×3=30
 - (a) Write the statistical definition of entropy. What is its unit? State the physical significance of entropy giving one example. Derive the relation between entropy and thermodynamic probability.

 2+1+2+5=10

Or

Derive Maxwell-Boltzmann law of energy distribution.

(b) What is radiation pressure? Prove that the diffuse radiation exerts a pressure on the walls of the container, equal to

3

$$\frac{1}{3}$$
rd of its energy density. 2+8=10

Or

From Planck's law of blackbody radiation, derive: 3+7=10

- (i) Rayleigh-Jeans law
- (ii) Wien's displacement law
- (c) Derive Bose-Einstein's distribution law.

Or

Derive the expression of total internal energy of a Fermi-Dirac gas.