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INTRODUCTION

An algebraic system with binary operations + (addition) and .
(multiplication) satisfying all the ring axioms except possibly

one of the distributive laws and commutativity of additionm, is a

near-ring. The collection of set mappings £ ¢+ G - G on a group

(G, +) [not necessarily abelian] together with the operations of

pointwise addition and composition of mapp ings, furnishes the

most fruitful example of a near-ring.

Extensive research works are being carried out on near-rings
and near-ring groups in which structure theory is of another area
of importance. Here we devote ourselves to obtain some special
types of structure theorems on near-rings satisfying different chain
conditions. St. Ligh, Beidleman, Oswald, Goyal and others have
done considerable work on various aspects of near-rings with chain

conditions on annihilators. Oswald and Goyal's work on near-rings
with chain conditions on annihilators are elegant and noticeable,

Chain condition on annihilators has its own beauty. Because of
non ring character of a near-ring, independent observation in case
of chain conditions on right and ljeft annihilators is of considera-

ble importance.

In this dissertation, we confine ourselves to near-rings and

near-ring groups with various types of chain conditions on annihi-

lators together with finite spanning dimension (fsd) and finite

(1)



(1i.)

Goldie dimension (fgd) characters. We extend the notion of fsd
in modules over a ring due to Fleury [1%] to near-ring groups.
to be noted that the fsd defined here iS different from
end Co-workers [ 47| (Ref. Page

It is

that in Satyanaraysna [44), [46]
748 [l;éﬂ ) end the first one will be denotesd by fsd-1. We obtain

a supplement primary (s-p) decomposition of the zero (0) of en
fsd-1 near-ring group.

We observe visible differences between a right Goldie near-

ring and a left Goldie near-ring as defined by Tamuli and
Chowdhury [ﬁé} end here, in both cases, ascending chain condition
on annihilators is an essential condition to be satisfied. So,

it is of obvious importance to study right Goldie near-rings and
left Goldie near-rings separately. Here, we have obtained Goldie
theorem analogue for a left Goldie near-ring. In some special
cases, results what may be termed as s partial converse of the
above results, have been obtained. In [}Q] , Chowdhury has glready
established some results on near-rings of right quotients of a
right Goldie near-ring and on some radical characters. Here, in

the other chapters, we deal with right Goldie near-rings extending
some results of A.Oswald.

Important end interesting investigation is carried out in
this dissertation on near-rings with fgd satisfying the acc on
annihilators with parts heving minimum conditions, Near-rings
with acc on near-ring subgroups always satisfy the acc on annihi-

lators and are also with fgd. But the converse is not true, for
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there exists examples of near-rings (rings) satisfying these two
conditions but the acc on its ideals. Yet such near-rings may
contain parts satisfying the acc(dcec) on its invariant subneer-
rings (ideals). Such type of subalgebraic structures seem to be
worthnoticing. Many a good problems would possibly draw the atten-
tion of the researchers working in this area., Outcome of our work

along the line mentioned ebove has been described in five chapters

accordingly.

The first chapter is nothing but our endeavour to introduce

near-rings and near-ring groups through the preliminary definitions

and properties to meke our discussion a self contained one.

The second chaptsr is the outcome of our paper[ﬁ}%ﬂ published

in IJPAM, Here we find the propogation of chain conditions from

a near-ring group E to its attached nesr-ring N - a generalisation

of the theorem of Oswald [}i} ., 1f B is with fsd-1, then E and

E/y satisfy the chain conditions on their substructures where H

is a non-zero supplement in E. Results along the line of P.Fleury

[}é] and B.Satyanarayena [4;] leand us to B-p decomposition of (Q)
t

in b as N Ei = (0) where Eis are supplements in B and the
i=]

t
collection f(E) = 5Q(E/E ). Also we prove here that for any
i=1 i
x belonging to each of the nssociated strictly primes of E, a

power of it belongs to the annihilator of & in some special cases.

Non singulerity of o left Goldie near-ring leads us to prove

the result (theorem n) of Oswald [4@} independently ([ilsjl) in



(iv)

Chapter IlI and plays a key role in what we have discussed later
in this chaptzsr such as : ¥When N is a strongly semiprime strictly
left Goldie (right) near-ring, the family of maximal left annihi-
lators of invariant subnear-rings is a finite one and with zero
intersection, If N is a distributively generated near-ring

(d.g.nr.) with distributively generated left annihilators then

in some special cases the complete near-ring Q(N) of left quotients
of N coincides with the classical near-ring Q. Moreover, Q has

no nilpotent left Q-subgroup and it satisfies the decc on its

left Q-subgroups. Conversely, if Q is a strictly left Goldie
hear-ring so is also N and if N is a d.g.nr. and Q satisfies the

the dcc on its left W~subgroups then N has no non-zero nilpotent

left N-subgroup.

We have proved some special properties of a strongly semi-

prime strictly left Goldie near-ring in the fourth chapter which

is the outcome of our papers \l}éﬂ and [I?iﬂ . A subnear-ring

ol a Goldie near-ring need not be Goldie. But some properties of
Goldie‘near-ring (existence of classical near-ring in particular)

are inherited by subnear-ring (without being Goldie) when the
parent near-ring is radical over it.
Moreover, a near-ring with acc on annihilators having no

infinite direct sum of ideals (near-ring subgroups) need not

satisfy the acc(decc) on its subalgebraic structures €.g. commu-
totive integral domain like 2 [Xi l i=1,2,... Xin = Xj gﬂ.

But it may contain some parte satisfying the acc(dcc)on the same.
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A left singular subset modulo moximal ennihilator of a left Goldie
near-ring leads us in some special cases to the cyclic structure

of an ideal 1 satisfying the dcc on its right N-subgroup. A

sufficient condition is established on en ideal (which is minimal
as an invarisnt subnear-ring with dcc on its right N-subgroups)

to be a near-ring group over a near-ring with dcc on its near-ring
subgroups which is an extension of en epimorphic image of N, If

N is a strongly semiprime strictly left $o1die ndar-ring where
every weakly essential left N-subgroup is essential then in case

of a countable ideal 1 with dcc on its N-subgroups, the N-group

N/l(l) also inherits the same character as L.

Structural difference of left and right annihiletors in =
near-ring N envisaged us to study what is termed as a right
Goldie near-ring in the fifth chapter. We have shown that every
ideal I of @n weokly regular d.g.nr. with acc on right annihilators

possesses an identity which is central idempotent. This leads us

to the~structure theorem such as : Weakly regular d.g.nr. with

acc on right annihilators is a direct sum of ideals which are

weekly regular simple d.g.nrs. with identities. Moreover, in case

of a strongly prime right Goldie near-ring N with d.g.left

annihilators, we have got a quasi near—domain M/(J(\M) for a left

annihilator M ( = 1(J)) of maximal right emnihilator J in N,
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decc
d.g.
d.g.nr.
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ABBRILVIATIONS AND SYMBOLS

ascending chain condition

descending chain condition

distributively generated

distributively generated near-ring

finite Goldie dimension

finite spanning dimension

with respect to

common left multiple property

left essential descending chain condition
Indien Journal of Pure and Applied Mathematics.
near-ring

factor near-ring

near-ring group ( N-group)

factor N-group .

set of positive integers.

group of integers under addition modulo
p (for p € 2% )

direct sum

~finite sum

ideal

omission of the symbol underneath it.
a group generated by a

a group generanted by a set S
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a left I-subgroup of I generated by x( € I).

I(x) -
17(8) - ,%?:6 1] xS = (O)J- where SC N and I is a
subnear-ring of N.
1(A) = lN(A)
r () =§x € 1iSx = (o)} where SC N and I is a
subnear-ring of N,
I'(A) = I‘N(A)
Ann (i1) = in e N| nmm =0, for all m € M} where MESE
rE(A) =ix € Elax = 0. for all a € A} cwhere Rc N
(I;x) ={n e N Ian)I}
g-:—e - essentiel
- -
& small
- closed
C
= - isomorphic
hIM - restriction of h to M.

Hoxgl(M,E) = %‘f : M - E | N-homomorphic image f(M)<&4 E}

bdl(b) - gpanning dimension of L

Zl(E)={% e E|Le = (0) for some essential N-subgroup L of NN}

7. (N) ={x e N| Ax = (0) for some essential left N-subgroup A
1

of N}

JQ(E) _.{P‘ P = Ann(M) for some prime N-subgroup M of E }



Q or Cc

Q(N)

L]

1

(viii)

i

%PIP is a meximel left annihilator of non-

zero left N-subset of N}

%PIP is & maximal le¢ft annihiletor of non-

zero invariasnt subnear-ring of N}

- classical near-ring of left quotients of N

complete near-ring of left quotients of N

- to refer the paper of the suthor.
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CHAPTER 1

Preliminaries

In this introductory chapter, we attempt to cover enough
of the fundamental concepts of near-rings and near-ring groups
to make our investigation self contained. This chapter has been
divided into four sections where the first one contains the
(basic) fundamental definitions. The second section contains
different substructures of near-rings and near-ring groups and

their relationship together with some results on then. The notion

of left (right) annihilators of subsets of a near-ring and a
near-ring group have been included in the third section. Various

preliminary results on annihilators have also been discussed.

The last section contains, for the sake of completeness, defini-

tions of some key terms such as chain condition, direct sum,

homomorphisms, some well known lemmas together with the fundamen-

tal results.

1.1. Near-rings and Near-ring groups.

1.1.1. Definitions t A triple ( N, #, .), where N is a

non empty set, + and . are two operations in N , is called a

right near-ring 1if

(1)



(1) (N,+) is a group (not necessarily Abelian)

(it) (N, .) is a semigroup and

(111) (a+b).c = a.c + b.c, for a,b,c € N. [If (iii) is replaced

by (iv) a.(b+c) = a.b + a.c then the corresponding triple is

called a left near-ringg

Unless otherwise specified, ab will mean a.b for a,b € N.

Obviously, every ring is a left as well as a right near-

ring. So, a near-ring can be called as a generalised ring. Another

*
®

natural example of a right near-ring is as follows

1.1.2, Exemple t The set M(G) ‘of all mappings of a
(additively written) group G into itself with addition and multi-

plication defined by
(f+g)(a) = £(a) + g(a) and
(fg)(a) = f(g(a)) for all a ¢ G and f,g € M(G) forms a

right near-ring.

We confine our discussion on right near-ring only. From now

onwards, unless otherwise specified, & near-ring (nr.) will mean

a right near-ring.

1.1.3. Definition & The additive identity of the group

(N,+) of a near-ring N is called a zero element and it is denoted

by O.



L.l.4, Property t For each a in a near-ring N, O.a = 0O

(zero element of N).

1.1.5. Definition ¢ A near-ring N is called zero symmetric

if a.0 = 0, for all a € N.

1.1.6, Definition If the semigroup (N, .) of a near-ring

N possesses an element 1 such that a.l = a=1.a, for all a ¢ N

then 1 is called the identity or unity of N,

Throughout our discusssion, N will stand for a zero symmetric

near-ring with unity 1.

1.1.7. Definitions t An element x e N iS called an idempotent

. 2
if x~ = X. Moreover, an idempotent x is called central if ax = Xa

for all a £ N. It is clear that the identity (if exists) of N

is always a central idempotent.

An element x ¢ N is called a nilpotent if for some

An element d € N is called distributive if d(a+b) = da + db,

for all a,b € N.

1.1.8. Properties t (i) If a,b € N, then (-a)b = -ab,

But a(-b) = -ab is not always true.

(11) If d is a distributive element of N then 4.0 = 0,

d(-a) = -da and (-d)(-a) = da, for all a e N.

1,1.9. Definition : An element x e N is said to be regular



if there exists an element y & N such that xyx = x.

1.1.10. Definition t+ If N 1is a near-ring then the group

(E,+) is called an N-group (near-ring group) NE when there exists

amap Nx E - E, (n,e) = ne such that
(1) (n1 + n2)e = nqe + n.e
(11)  (nqny)e = nqy(nge)

In what follows, E will stand for the near-ring group NE .

Clearly near-ring N can always be considered as an N-group.

We shall write NN to denote N as an N-group.

1.1.11, Example (Ex. 1.18(c) [42]): Let G be an additive
grou and M(G) be a near-ring defined in 1,1.2., then G is a
M(G) - group when M(G) x @ - G such that (f,x) - f(x), for x ¢ G,

f e M(G).

1.1.12, Example t Every left module M over a ring R is an

R-group over the near-ring R.

l.,1.13. Properties ¢ If E is an N-group then

(1) O.e = 0 (the first O is the zero element of N and

the second O is the zero element of E).

(11) (-n)e = -ne and
(1ii) (n"ni)e = ne - n4e, for all e ¢ E} n,nqy e N.



1l.2. Substructures

If A and B are two subsets of a near-ring N then we

consider the set AB = {abla € A, b € B}.
Now, we find some substructures of a near-ring given below:
1.2.1. Example (E(2), Page 339-340, [#2])s

N = {0,a,b,c} is a near-ring under the operations defined

by the following tables.

+ | 0 a b c .| O a b ¢
O[O0 a b c Olv v 0 U
a a 0 ¢ h a 0O 0 a a
b | b ¢ 0 a b O a b b
c c b a O c O a ¢ c
(1) (i1)
Table ¢ 1.1

Here we note that if A = {0,a}, B = {0,a,b} and C = {0,a,c}
are subsets of N then BN ¢ B, CN ¢ C whereas NA ¢ A and AN c A.

Thus, we define the following

1.2.2, Definitlons: A non-empty subset S of a near-ring N

.is said to be

(1) a right N-subset of N if SN ¢ S




(i1) a left N-subset of N if NS ¢ S and

(iii) an invariant subset of N if NS ¢ S, SN ¢ S,

It is clear that an invariant subset of a near-ring N is a
left as well as right N-subset of N. Moreover, every left(right)

N-subset contains the zero element of N.

We now define regularity of a near-ring in a general setting

in relation to what is available.

1.2.3. Example (E(14), page 339-340[42]) 1

N = {0,a,b,c} is a near-ring under eddition [defined in

table 1,1,(i)] and multiplication defined by the following table

. 0 a b c
0 0 0 0 o
a 0 a 0 c
) bl 0 0 o0 ©
c 0 a 0 c
Table 3 1.2

Here A = {O,a,c} is an invariant subset of N. For each x ¢ A,

we have an element y € A such that x = Xxyx for a = aca, ¢ = cac,

Now, we define the following

1.2,4, Definitions ¢ An invariant subset A of a near-ring

N is called regular if each x € A is  regular ,



A near-ring N is called regular if it is regular as an

invariant subset.

1.2.5. Definitions t A right (left) N-subset S of a near-

ring N is called nil if each element of S is nilpotent.

A subset S of a near-ring N is called a nilpotent subset 1if

there exists a +ve integer t such that St = (0) [i.e., 8485 ...at=0

fOI‘ ai E S, i = 1'2'000’ t]

1.2.6. Lemma : Intersection of two left (right) N-subsets

of a near-ring N is again a left(right) N-subset of N.

Proof ¢ Let A and B be two left N-subsets of N. Then

X eANB =>x €A and x € B. Thus for n ¢ Ny, nx €¢ A and nx € B

a5 A, B are left N-subsets of N.

Therefore, nx € A N B, This gives, A N B is a left N-subset
of N." /

1.2.7. Extension t Intersection of any number of left

(right) N-subsets of a near-ring N 1s also a left(right) N-subset
of N.

1.2.8. GCorollary $ Intersection of any number of invariant

subsets of a near-ring N is also an invariant subset of N,

1.2.9. Lemma ¢ If A is a left N-subset and B is a right

N-subset of a near-ring N then AB i8 an invariant subset of N.



Proof & Since N(AB) = (NA) Bc AB as A 1is a left N-subset
of N and (AB)N = A(BN) c AB as B is a right N-subset of N, so

AB is an invariant subset of N. /

1.2.10. Lemma ¢ If A 1is a left (right) N-subset of a

near-ring N then for all t € z*, At is a left (right) N-subset

of N.

Proof 3 If t = 1 then it is obvious. If t = 2 then

2

NA2 = (NA) A c AA as A is a left N-subset of N. Thus, NAZE.A .

So A2 is a left N-subset of N,

Now, let Ar—i be a left N-subset of N for any r € z* then

NAr—i cC Ar-i .

Therefore, NAT = A" 1y A c Rt UL

Hence AT is also a left N-subset of N if Ar'i is a left

N-subset of N. Therefore, by induction, AY is a left N-subset of

N for any t € yARY

l.2.11 Lemma 3 (5.1.4, Chowdhury [71): The sum

A+B={ath| acA, beB } of two right N-subsets A end B of

a near-ring N is also a right N-subset of N,

Now, we observe some other substructures of a near-ring

given below.



1.2,12. Example (H(2), page 341-342 [azi):

N = {0,a,b,c,x,y } is a near-ring under the operations

defined by the following tables,

+ 0 a b c X y . 0 a b c X v
O|0 a b ¢ x vy olo 0 o o o0 o
ajla 0 y x c a|l0 O a a a a
b b X O y =a ¢ b 0 0 b ¢ c b
c Cc y X O b a c O O ¢ b b c
X X c a y O x [0 0 x y y x
y|y ¢ @a b x y |0 0 y x x Y
(1) (11)
Table ¢ 1.3

We see that if X = {O,x,y} then X is a sub-group of the near-
ring N which satisfies the following 3+ (i) XN ¢ X, (ii) N X £ X,
(111) X.X c X. Thus, we are in a position to define the following.

1.2.13. Definitions 3+ If N is a near-ring end H is a

subgroup of (N,+) then H is called

(1) a left N-subgroup of N if NH c H,

(11) a right N-subgroup of N if HN ¢ H

(1ii1) a subnear-ring of Nif H.H cH and
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(iv) an inveriant subnear-ring of N if NH c H and HN c H.

A subgroup M of an N-group E over the near-ring N is called

an N-subgroup of E if MM ¢ M.

1.2.14, Note ¢ A left N-subgroup H of N is an N-subgroup of

NN and conversely.

It is seen in 1.2.12 that X is a right N-subgroup as well

as a subnear-ring of N but it is not an invariant subnear-ring.

1.2.15, Definitions & A subnear-ring A of N is said to be

distributively generated (d.g.) if there is a set D of distribu-

tive elements of N such that A =n {S | S 5D, (S,+) is a subgroup
of (N,+)}.

If N, as a subgroup of (N,+), is generated by the set D of all
distributive elements of N then we say that N is d.g. and we

write N_= <D>.

It is clear that an arbitrary element of N = <D> is of the

type § +d,, d;, €D.
fin ~ i1

1.2.16. Lemma ¢ If A is a left N-subgroup of a near-ring N
and x ¢ N then Ax 1s a left N-subgroup of N.

Proof i Since A 1s a left N-subgroup of N,

N(Ax) = (NA) x c Ax. Hence Ax is a left N-subset of N,
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Also, if ax, bx are any two elements of Ax for a,b £ A then

ax - bx = (a=~b)x £ Ax as a-b € A.

Hence Ax is a left N-subgroup of N, /

1.2.17. Corollary ¢ Nx is always a left N-subgroup of N.

1.2.18. Lemma ¢ If A 1is a right N-subgroup of & near-ring

N and x ¢ N then xA is a right N-subset of N.

Proof : Since A is a right N-subgroup of N,

(xA) N = x(AN) ¢ xA. Hence XA is a right N-subset of N. //

1.2.19., Corollary ¢ For x € N, xN is a right N-subset of N.

1,2.20. Lemma ¢ Intersection of two left (right) N-subgroups

of a near-ring N is a left(right) N-subgroup of N.

Proof & Let A,B be two left N-subgroups of N and so [by 1.2,6]

ANB is g left N-subset of N.
(N,+) and so A N B is also a subgroup of (N,+). Thus A N B is a

Since A, B are subgroups of

left N-subgroup of N. /

Combining the above result for left as well as right N-subgroups,
we have
Intersection of two invariant subnear-rings

l°2021. I.Bmma ‘
of a near-ring N is an invariant subnear-ring of N,



12

1.2.22., Lemma 8 If I is a left N-subgroup of a near-ring N

and x ¢ N then (I § x) = {n e N} nx ¢ I} is a left N-subgroup
of N.

Proof ¢ Let a,b e (I 3} x) then ax, bx ¢ I.

Therefore, (a-b)x = ax - bx e I

= a-be (I} x)
Thus, (I 3 x) is a subgroup of N,

Also, if y € (I 3 x) then yx ¢ I.
Therefore, for any n € N, we have
n (yx) e NI c I

= (ny)xel

= nye (I} x)
Hence (I § x) is a left N-subgroup of N. /

It is observed that the following four results are similar

to thatofgimodule over a ring and so their proofs are omitted.

1.2.23, Lemma ¢ Intersection of two N-subgroups of N 1s

an N-subgroup of \E .

1.2.24, Lemma ¢ If M is an N-subgroup - of NE and S is an

N-subgroup of yM then S is an N-subgroup of yf.

1.2.25. Lemma ¢ If 5,M are N-subgroups of £ such that

S ¢ M then S is an N-subgroup of \M .
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1.2.26. Lemma $ If A 1s an N-subgroup of K and I is an

N-subgroup of NN then Ia is an N-subgroup of A for a € A.
Hence Na is also an N-subgroup of A.

1.2.27. Definitions ¢ Let I be an additive normal subgroup

of a near-ring N then I is called

a right ideal of N if in € I, for all i € I, n € N,

(1)

(i1) a left ideal of N if nq (i+ny)-nyn, e I, for all
ielI, ni,nz e N.

(1ii) an ideal of N if I is a right as well as a left ideal

of N.

The condition (ii) for a left ideal is equivalent to

nl(n2 + i) - nqn, € I, for all i € I and n{,n, € N as I is an
addit ive normal subgroup of N.

We write I Q_N when I is an ideal of N. All ideals of N

except {0} and N are called proper ideals of N.

If near-ring N does not contain any proper ideal of it then

N is called a simple near-ring.

It is clear that an ideal is itself a near-ring and so every

ideal of a near-ring N is a subnear-ring of N,

1.2.28. Lemma (2.15, Page 46[42]) 3 If A is a left

a near-ring N end B 15 a left ideal of N then

N-subgroup of
A+B = Bep is a left N-subgroup of N.
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Proof t+ Clearly A+B is a subgroup of N. Now, if n € N,

a e A, b e B then

n(a+b) = n(a+b) — na + na €¢ B + A as B is a left ideal of N

and A is a left N-subgroup of N.

Therefore, n(a+b) € B+A = A+B as B is a normal subgroup of N.

This gives, N(A+B) c A+B. So A+B is a left N-subgroup of N. /

1.2.29., Lemma ¢ If I is a left ideal of N then

T ———

(I 3x)={neN|nxelI]} is a left ideel of N for x e N.

Proof ¢ Since left ideal is a left N-subgroup,.

[by 1.2.22]) ( I § x) is a subgroup of N.
Now, if n e N, y € (I § x) then

(n+y—n) X = nX + yX - nX

= n4 + i - N4, where ny = nX € N and

i1 =yx el

= (n+y-n) x = mq+i-nqy e T as I 1s a left ideal of N,

> n+y-ne(l}x)

Hence (I j x) 1s a normal subgroup of N.

Again, if n, n;p € N, y € (I 3 x) then
[n(y+n,) - n ny] x = [n (y+ng)] x = (n np) x,
= n(yx + nzx) - n(nyx)
= n(i+nz)-nnz, where 1 = yx € I and

n3& n2x8No
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Therefore, [n(y+n,) - nn,]x = n (i+n3)-nn5 e I

= n (y +ny) - nmy e (I} x)

‘Thus ( I ; x) 1s a left ideal of N. /

14

1.2.30, Definitions ¢ A normmal subgroup M of an N-group E

is called an ideal of E if, for allne N, m e M, e € E,

n(e+m) - ne e M.

Since M is a normal subgroup of E and so the above condition
may be replaced by n(m+e) - ne € M.

Thus the left ideal of a near-ring N coincides with the ideal

of N .

N

Now, we give some useful results related to ideals of an

N-group.

Intersection of two ideals of an N-group E

1.2.31. Lemma @

is again an ideal of E.

1.2,32., Lemma 3 If M is an ideal of an N-group E and S is

an N-subgroup of E such that M ¢ S then M is an ideal of an

N-group S,

1.2.33., Lemma ¢ If H is an N-subgroup of an N-group E and

M is an ideal of E then H N M is an ideal of N-group H.

Proof § Clearly, H N M is a Subgroup of H, Since M is a nomal

subgroup of E, so H N M is a normal subgroup of H,
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Now, if n ¢ N, h e.H and x ¢ H 1M then nh ¢ H and n(h+x) € H.

Therefore, n(h + x) - nh ¢ H.,

So, H NM is an ideal of H. /

1.2.34., Lemma 38 If I and J are ideals of an N-group E then

I +J is also an ideal of E.

Proof s Let i + J, 11 + 31 el +J for 1,11 € I; 3,31 e J.
Therefore, (L + J) = ( 14 + J¢)

=i+ J-d -1

-+

nii-,jz-ii,Wher‘e:lzﬂ.j-,jieJ.
= 1 - 11+33 [33 ¢ J=a normal subgroup of E]
=12433,[12=1"11€ﬂ

(1+,j)-(11+31)=12+;j}el+J.

=
Thus I + J is a subgroup of E.
Also, for e € E, € + (1 +]) -e

B(e‘_i-e)...(e-o-j-e)cI+JasI,Jar‘e1dealsofE.

Hence 1 + J 18 a normal subgroup of E.

Now, for n € N, we have

n(e+i+3)"ne

= 1 (e1+ j) - neqt nei-ne,[eiae + 1 eE:]

=4 +n (e+i) - ne, |1 = n(eq+J) - neq ¢ i}

ey e ipligmm (o) mE e d
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= n(e+1+Jj)-ne=734+1i4ed+I=1+J
Therefore, I + J is an ideal of E. /
As a corollary to the above, we get

l.2.35. Coroliary ¢ The sum of two left ideals of a near-

ring N is also a left ideal of N.

1.2.36. Modular law 3 If A,B,C are ideals of a near-ring

group E such that Bc A thenB + (CNA) = (B +C)Nna.,

1.2.37. Definitions ¢ If I is an ideal of an N-group E then

the set E/I (=E ) of cosets e + I ( =€) of I, e € E, under the

operation + defined by
(1) (e +I) +(eq+I)=(e+eq) +1I and
(11) n (e+I) = ne 4+ I, forne N, e, e4 € E.

formd an N-group and this N-group E/I is called a factor N-group .

We write, -e + I for —(e + I),
If E = N, the corresponding factor N-group N/, (=N) becomes

a near-ring called a factor near-ring when I is an ideal of N

and the condition (ii) above is replaced by
/
(11) (n+ I)(ng + I) = nny + I for n,n4 e N.

1.2.38. Lemma 8¢ If I and M are ideals of an N-group E such

that I c M then M/ is an ideal of E/1-
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Proof ¢ Here I is an ideal of M [by 1.2.32] end thus M/ exists

Letm + I, mq +Tce¢ M/I then
(m+I) - (m1 + I) = (m - m1) + I ¢ M/I
Now, if e + I € E/I for e ¢ E then

(e +I) +(m+I)-(e+1I)=(+m-e)+1Ic M/ 1

Thus, M/; 1is a normal subgroup of B/ e
Again, if n € N then we have
n [(e+I) + (m+I)] - n (e + I)

=nf[(e +m) + I] - ne + I

= (n(ewm) - ne) +I e M/

Therefore, M/I is an ideal of E/I 4

1.2.39. Lemma ¢ Let I be an ideal of an N-group E such that

I cM then M/I is an N-subgroup of an N-group E/I if and only if
M is an N-subgroup of E.

proof : Let M be an N-subgroup of E then [by 1.2.32] I is

an ideal of M. Thus M/I exists,

Ifm + I, mq + I € M/I form, mq € M then we have

(m+ I) - (mq +I)=(@- mq) + I e M/I
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Thus, M/I is a subgroup of E/I .

Now, for n € N, n (m + I) =nm«-1[t:l\’l/I

Hence lVl/I is an N-subgroup of E/I .

Conversely, let M/ be an N-subgroup of E/¢. Thus M ¢ E.

Ifm + I eM/yformeMandne N then
n(m + I) ¢ M/

= m + I1ell/g

= nm e M

Also, (m + I) - (mq+ I) € M/I for mymq € M as m+I, my+I € M/I
Thus, (m - mq) + L ¢ M/ ¢
= m = m1 € Mo

Therefore, M 18 an N-subgroup of E. /

1.3, Annihilators 3

1.3.1., Definitions ¢ Let il c b then the annihilator

of M[ann()] in the near-ring N is defined as

ann(M) = {n € N|lnm = O, for all m € M}

If E=N then ann(M) is written as lN(M) or in short 1(M) and it

alled a left annihilator of M in N.

is 1is c

If S c N then ry(5) = {x ¢ B | sx = 0, for all s ¢ S}
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is defined as the annihilator of S in E.

Ai1so, we note that if E = N then rE(S) is written as rN(S)

or in short r(S) and it is called a right annihilator of S in N.

1.3.2, Definitions ¢ If I is a subnear-ring of N and S ¢ N

then the left annihilator of S in I is defined as 1I(s)={x e IixS=(

and right annihilator of S in I is defined as r;(S)={x e Ilsx=(0)} .

If I = N then lI(S) = lN(S) and rI(S) = ry(8) are written as

1(S) and r(8) respectively.
1.3.3. Lemma ¢ If M ¢ E then Ann(M) is a left ideal of N,

Proof ¢ Let x,y ¢ Ann(M) . Thus xm = O = ym for all m € M.
Therefore, Xxm — ym = O

= (x-y) m = 0

= X -y € Ann(M).
Again, forne N, (n + x =n) m =nmm + xn - on = 0 a8 xm = O.

Hence n + x - n € Ann(M) .

So, Ann(M) is a normal subgroup of N.
also, for nq € N, [n (ng+ x) - ny]m
= n(nym + xm) - (nny) m
= n(nim) - n(nim), as xm = O

= 0
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Thus, n(nq+ x) - nny & Ann(M)

Therefore, Ann(M) is a left ideal of N. /
1.3.4., Corollary t If E = N then Ann(M) = 1(M) is a left
ideal of N. /

If a ¢ N then 1({a}) is written as 1l(a) and it is a left

ideal of N.

1.3.5. Lemma ¢ If M is anN-subgroup of . E then Ann(M) is en
ideal of N.

Proof + Ann(M) is a left ideal of N [by 1.3.3].

Now, if x € Ann(M) and n € N then

(xn) M = x(mM) ¢ ™M = (0).

=» xn € Ann(M)

Hence Ann(M) is a right ideal also and so Ann(M) is an ideal
of N. /

1.3.6. Lemma 8 If A is a left N-subset of N then 1(A) is an
ideal of N.

proof ¢ 1.3.4. gives that 1(A) is a left ideal of N,

Now, if x ¢ 1(A) end n € N then
(xn) A = x (nA) ¢ XA = (0)

= xn e 1(4)

Hence L(A) is a right ideal of N.
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Therefore, 1(A) is an ideal of N. /

1.3.7. Corollary 8 If A c N then 1(1(A)) is an ideal of N. /

If A ¢ N then r(A) is a right N-subset of N.

l.3.8. Lemma

proof s Let x € r(A) and n € N then

A(xn) = (Ax)n = (0)

= xn e r (A), for all n e N.

Therefore, r(A) is a right N-subset of N. /

It is noted that if a € N then r({a}) is written as r(a) and
it is a right N-subset of N.

1.3.9. Lemma 3 If A is a right N-subset of N then r(A) is an

invariant subset of N.

proof ¢+ By 1.3.8, we have r(A) as a right N-subset of N.

Now, if x € r(A) and n € N then
A(nx) = (An)x ¢ Ax = (0)
=» nxX € r(A) for all n € N.

Hence r(A) is a left N-subset of N.

Therefore, r(A) is an invariant subset of N. /

1.3.10. Corollary @ If A ¢ N then r(r(A)) is an invariant

subset of N.

1.3.11. Lemma 3 If S ¢ N and M c E then

(1) Srg(s) = (0) and (11) Ann(M)M = (0).



Proof 1 Easily follows from definition, /
1.3.42. Corollary ¢ If E = N then Sr(S) = (0) and
1(M) M = (0) .

1.3.13, Corollary ¢ If TcS cNand P ¢ M ¢ E then

Trg(S) = (0) eand Ann(M)P = (O)
Proof ¢ We have
TrE(S) c Sr'E(S) = (0)

(0)

1l

= TrE(S)
Also, Ann(M) P ¢ Ann(M) M = (O)

= Ann(M)P = (0) . /

1.3.14, Corollary ¢ If E =N in 1.3.13 then

Tr(S) = (0) and 1(M)P = (0) .

1.3.15. Lemma ¢ If A gk, Bgh such that A ¢ B then

Ann(B) ¢ Ann(A).

Proof ¢ We have from 1,3.11 that Ann(B) B = (0).

Therefore, Ann(B) A ¢ Ann(B) B = (0).

— Ann(B) ¢ Ann(a). //
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1.3.16. Corollary ¢ If E = N then 1(B) ¢ 1(A) when A ¢ B,
1.3.17. Lemma ¢ If P,Q c N such that P ¢ Q@ then
rE(Q) c r‘E(P).

Proof ¢ We have from 1.3.11 that Qrg(Q) = (0).

Therefore, PrE(Q) c Qr‘E(Q) = (0)
= I‘E(Q) c I‘E(P) ./

1.3.18. Corollary s If E = N then r(Q) < r(P) whenP ¢ Q.

1.3.19. Lemma 3 If ScNandM c E then

(a) rg(ann(rg(s))) = rz(S) and

(b) Ann (rp(&nn(M))) = Ann(M).

: By 1.3.11, we have S rE(S)'= (0)

Proof
= S c Ann (rE(S)) v . e (1)

Thus, replacing S by Ann(M) we get
PRI (11)

Ann(M) ¢ Ann(rg(Ann(M)))

Again by using 1.3.17 in (1) we get

rE(S) 2 rE(Ann(rE(S))) s o v (1i1)

Also, we have from 1.3.11, Ann(M) M = (0).

= Mc I‘E(Ann(m))

Replacing M by rE(S) we get
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r(8) g rg (Ann (rg(s))) RN (v)
Using the result 1.3.15 in (iv), we get
Ann(M) o Ann (rB (Ann(M))) .« o e (vi)

Therefore, (ii) and (vi) give, Ann(1) = Ann(rE(Ann(M))).

Also, (iii) and (v) give, ry(S) = rgp(Ann(rg(s))). /

1.3.20., Coroilary 8 If E = N then we get

r(S) and

]

r(1(r(s)))

1(r(1(s))) = 1(8) .

1.3.21. Lemmg[ilhi]: Let A be a subnear-ring of N and S ¢ A

then rN(S) NA-= FA(S) and 1.(S) N A = lA(S).

Proof 3 Let x € PA(S) then

Sx = (0) and x ¢ A(S N)
=> X € rN(S) naAa.
= r,(8) ¢ ry(S) N A
Conversely, let y € rN(S) n A

= yE rN(S) and y € A

= Sy = (0) and yeA(g_N)
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= V E rA(S)

o ry(S) N Agr,(s)

Therefore, rN(S) nA-= rA(S)

Similarly we can show that lN(S) NA= lA(S) ./

1.3.22. Lemma ¢ If x & N such that 1(x®) = 1(x**1) for some

t
¢ > 1 then 1(x**") = 1(x") for all positive integer m.

t
proof ¢ If m = 1 then 1(x +1) = l(xt) which is our hypothesis.

Thus the given result is true for m = 1.

Now, let the result is true form = r > 1.

i.e., l(xt+r) = l(xt)- cee (1)

t+r+i) then yxt+r+i e 0

.

Let y € L(x

= (yx) xt+r = 0

o yxe 165 = 1x), [by (1]

—> yxt+1 =0

t .
= Yy E l(xt+1) = 1(x"), by hypothesis.

o l(xt+r+1) c l(xt).

But, since r+1 is a positive integer, then clearly 1(xt) c

t
l(xt+r+1). Thus , we have l(xt*r"i) == l(x ).

when the result is true form = r then it is true

Ther'efor'e ’
d tion we have 1(x =
by induc ’ ( ) l(X ) for all

form = r+l. Hence,
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positive integer m. /

Similarly we get the following

+1

1.3.23. Lemma ¢ If x ¢ N such that r(xt) = r*(xt ) for some

t > 1 then r(xtm) = r(xt) for all positiv;e integer m. /

Chain conditions, Direct sums and N-homomorphisms.

1.4,

1.4.1. Definitions ¢ Let Jf be a non-empty collection of

subsets of a near-ring N and C be a subclass of 3& . Then C is

called a chain if, for D4, D, € C, either D4 ¢ D,
Let D_ € Jr then D is called a maximal element of % if D
is not properly contained in any element of )

/ / |
Let D ey then D, is called a minimal. element of ¥ if Dr,n

contains no element of ¥¢ properly,

1.4.2. Zorn's Lemma 3 Let J§ be a non-empty collection of

If the union of each chain in 7§ (with respect to

subsets of N,
set inclusion as the partial ordering) is an element of’yg, then Y

contains a maximal element.

1.4.3. Definitions (1) A near-ring N is said to satisfy

the ascending chain condition (acc) on its left N-subgroups if

any ascending sequence Ay ¢ Ay c Az < ... of left N-subgroups

of N stops after a finite steps (i.e., there exists a t e 2% such

that Ay = Ag,q = +++ )-
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(ii) A near-ring N is said to satisfy maximum condition on
left N-subgroups of it if any family of left N-subgroups of N

has a maximal element (w.r.t. set inclusion as its partial

ordering).

Analogously, we define the following .

(1ii) A near-ring N is said to satisfy the descending chain

condition (dcc) on its left N-subgroups if any descending sequence

A 2Az 2 A3 D +.. Of left N-subgroups of N stops after a finite

steps (i.e., there exists a t ¢ z¥ such that At = AtFi‘ ees) .

(iv) A near-ring N is said to satisfy minimum condition on

left N-subgroups of it if any family of left N-subgroups of N

has a minimal element,

The equivalence of (i), (ii) and (iii), (iv) of the above
definitions easily follows exactly as in case of well known

algebraic structures like group, ring etc.

We note that the acc and the dcc and its equivalent statements

on other subalgebraic structures can be defined analogounsly.

1.4.4. Lemma ¢ In a near-ring N, the maximum condition on

left(right) annihilators is equivalent to the minimum condition

on right (left) ennihilators.

Proof t Let the maxXimum condition on left annihilators in

N hold . Now, we consider an infinite descending chain on right

annihilators as
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r(Si) E_P(SE) ) r(SB) D eee (1)
where Si' 82, Sj, «eey are subsets of N,
Thus, by 1.3.16, we get
(11)

1(r(59)) € Ur(S)) g Lr(S3) g ...

Since the maximum condition holds on left annihilators in N

and so the chain (ii) will terminate after a finite steps. Thus,

for finite t € Z*, we have
l(r(st)) = l(r(5t§1)) = l(r(St+2)) = eeoe
== r(l(r(St))) = P(l(r(st*i))) = P(l(?(st+2))) = e

=> r(St) = F(St+1) = P(St+2) = eee [by 1.3.20]

Hence the descending chain (1) also terminates after a finite

stebs. So the minimum condition on right annihilators holds when
the maximum condition on left annihilators holds. //

lol‘o5o Lemma L
on right annihilators in N and S be a subnear-ring of N then S

Let N be a near-ring satisfying the acc(dcc)

also satisfies the acc (dee) on right ennihilators in S,

proof i Let the ascending chain on right annihilators of

Ai, Ay, Aj, eeo DE

rg(Aq) € rs(A2) € TslAs) < .o (1)

where Ai; Azo A}i coo are subsets of N.

Hence 1.3.16 glves,
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ls(rs(Ai)) 2 ls(rs(Az)) 2 1s(PS(A3)) D see
Again, by 1.3.17, we get
T'N(ls(rs(Ai))) c rN(]‘S(rS(AZ))) c TN(lS(FS(A3))) C eee

ihe
But N satisfiegkacc on right annihilators in N, Thus, for a

finite t € 2%, we have

ry(1g(rg(Ag))) = ry(lg(rs(ag g))) = ...

>

= ry(lg(rg(a))) NS = ry(lg(rg(Ag,))) NS = ...

=$‘ rS(lS(rS(At))) = PS(ls(rS(At+1))) = .6
= rg(Ay) =rg(acq) = ... , [by 1.3.20]

Hence the subnear-ring S of N satisfies the acc on right
annihilators in S. /

Similarly, if the near-ring N satisfies the acc (dcc) on
left annihilators in N then the subnear-ring S of N also satisfies

the acc(dcc) on left annihilators in S

1.4.6. Definitions & Let {Ei} be any family of N-groups

then {(..., eg» -++) | @3 € By . &5 = 0 for all but a finite

\S

f i} is defined as the direct sum of Ei and is denoted

number 0O
by @ E;. Each Eq is called a direct summand of £ E.
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Also, if {N;} is a family of near-rings then

{(eeey ngy o0e) | n; € N;, n; = 0 for all but a finite number of

1} is defined as the direct sum of Ni® and is denoted by @ N,.

Each N; is called a direct summand of P N, -

t
1.4.7. Lemmas t (1) Direct sum @1 E; of N-groups is an
—_— i=
-t

N-group if the elements of Q% E; are added coordinatewise and
i=

for n € N, ey € Ei ’

N(euey €9eee) = (ouey mey, o00), 1= 1,2,..., t.

t
ii) Direct sum @ N; of near-rings is a near-ring if the
1 i
i=

t
elements of Q%. N, are added coordinatewise and the multiplication
i=

defined by (a4, 8pyeeey at)(bi’ Doyeces bt)z(albi,azbz,...,atbt)

for ai' bi € Ni’ i= 1’2’000, t.
t
) Ai for a finite number

of ideals (subgroups) Ay of a near-ring N is called a direct sum

of ideals (subgroups) provided each element of A is uniquely
t

expressible in the form 121 849 where a; € Ai' i=1,2,..., t

and this direct sum is denoted by A = Ay @ A,®... DA,

1.4.9. Lemma 8 Let A;(i =1,2,..., t) be ideals (subgroups)



32

t
of a near-ring N then 21 A; is a direct sum of ideals (subgroups)
i=
t
if and only if A, N I Ay = (0).
I 14

1.4,10, Definitions ¢ Let N and Niy be two near-rings then

a mapping £ ¢ N ~ N’l is called a homomorphism if for all x,y € N,

f(x+y) = £(x) + £(y) and

f(xy) = £(x) £(y).

Kernel of homomorphism f(ker f) = {x € N | £(x) = 0},

If Ker £ = (0) then f is called a monomorphism and N is said to

be embedded in Ni' If homomorphism f is injective as well as

surjective then f is called an isomorphism and we write N= Ny

1.4,1L., Definitions ¢ If M and M4 are two N-groups over the

near-ring N then a mapping f ¢+ M -~ M4 is called an N-homomorphism

if for all x,y € M, n € N, f(x+y) = £(x) + £(y) and f(nx) = nf(x).

Kernel of N-homomorphism f(Ker f) = {x e M | f(x) = 0}, 'If

Ker f = (0) then f is called an N-monomorphism and M is said to

be embedded in M{. When M is embedded in M4 then we can consider
M as an N-subgroup of M. An N-homomorphism f is called an

N-ep imorphism if f is surjective, If N-homomorphism f is injective

as well as surjective then f is called an N-isomorphism. It is

denoted by M = Mq -



CHAPTER II

fsd-1 near-ring groups with chain conditions

We recall that a module M is said to have finite Goldie
dimension if it does not contain an infinite direct sum of sub-
modules. This 1is equivalent to saying that for any increasing

sequence of submodules of M, such a8V, cVp V5 € +.vy there

is an 1 ¢ z%t such that Vi is essential in Vj’ for all Jj 2 i.

Among the several possible ways of dualising this concept,

we extend the concept of P.Fleury [18] what is known as finite

spanning dimension. We note that the basis of a vector space can
be defined as a maximal set of linearly independent vectors or

as a mininal set of vectors which spans the space. The generalise-

tion of the first one coincides with the concept of what is known

e dimension. We confine our discusrion to the second

as Goldi
It is to be noted that

description of a basis of a vector space.

alisation of second one in case of a near-ring group

the gener
t we have called an N-group with finite spanning

coincides with wha
dimension. The main results of this chapter have appeared in our

paper [[15]]) I1JPAM .

This chapter consists of five sections where the first one

(33)
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(prerequisites) conlaing results on small ideals of N-groups,

The second section contains properties of essential ideals
and essential N-subgroups of an N-group k. We prove here the
generalised form of a result of Oswald [41] viz}{ Let N-group E

be with acc on annihilators such that Zl(E) = (0). If N has no

infinite direct sum of left ideals and every essential left ideal
of N is an essential N-subgroup of NN then N satisfies the dcc on

annihilators of subsets of K.

The third section contains the results on the family # (E) of

associated strictly primes of E such askﬂ.ﬁyl GB E2) =fl(E1)l{ﬁ(E2)

where Ei’ E, are N-groups. Also, for two N-subgroups M, Q and

an ideal T of E we have L9Q((M n u)/T) =3Q(M/T N Q/T) c 3(] (M/T)

N #(Q/p) where T M, Q.

In the fourth section, introducing the notion of finite
spanning dimension (fsd-1) in an N-group which is different from

that in Satyanarayana and Coworkers [44, 47], we prove our main

results of the chapter as follows 3
Every fsd-1 N-group E determines a unique integer t( > 0)

(termed as finite spanning dimension Sd4) such that B is a sum

t t
I By of hollow ideals with J;g Ej #E (1 21,35,

i=A
Every fsd-1 N-group E satisfies the acc on its supplements

(in some special cases).
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If E is an fsd-1 N-group and H is a non-zero supplement in E
then E/,; satisfies the dcc on ideals of E/y

The last section - the fifth one, contains results on a
prime complete N-group E as follows

If £ is an fsd-1 N-group with non-small extension satisfying

the acc on annihilators then

(1) ﬁg(E) is a finite collection.

(1i) there exists an s-p decomposition of (0) in E and

(iit) if Ef NE, N ... NEg = (0) is an s-p decomposition

t
of (0) in E then # (&) = A (e/y )
. ¥ i

i=1

Another interesting result established here shows how an

fsd-1 N-group depends on the fgd character of the attached near-
ring so as to be more well behaved as in case of a Noetherian
module. That is, if N is a commutative fgd ring with 4 and

’

Z,(E) = (0) then (in some special cases) for any x ¢ n P
l :
P e fJ(E)

we have a t € z% such that x° e Ann(E).

2.1, grerequisites :

2.1.1. Definitions : Let A and B be two ideals of E such

that A c B then A is said to be small in B(denoted as A CsB) if

each ideal L ( £ B) of £, A + L = B implies L = B, An ideal M of
E is small in E if M is small in E when E 1s considered as an
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ideal of itself. Obviously, (0) is . smal. in E ( #.O)

2.1.2, Definition ¢ If M is an ideal of E then an N-epimorphism

f : M - E is called a small N-epimorphism if Ker f is small in M

We write ¢ If M is an ideal of E, then Homl(M,E) = {fiM-E|N-

homomorphic image f(M) is an ideal of E}. It is noted that

Homy (M,E) # 0 .

2.1.3, Lemma ¢ If T is a proper ideal of E then the follow-

ing statements are equivalent,

(a) Tcg E

(b) The natural map f : E - E/T is a small N-epimorphism.

(c) For every ideal M of £ and for every h ¢ Homi(M,E),

(a) = (b) 1

groof

Let the natural N-epimorphism

f i1 E - E/T defined by f(e) = e+T, for e ¢ E,

So, Ker £ = T. And T ¢ E = f is a small N-epimorphism in E.

(b) = (c) ¢

Let f be a small N-epimorphism in E. So, Ker f cg E. But

Ker f = T(as above), hence T cgE.
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Now, let Im h + T = E where Im h is an ideal of E as

(c) = (o) 3
Let L be an ideal of E such that T + L = E,
Consider the natural inclusion map

0 o
At L - E such that A(x) = x, for x ¢ L
° o
then L(L) = Lc E and so 4 ¢ Homy (L,E) .
0

Therefore, T + L = E gives T + 4(L) = E. Hence by (c),
2] [
A(L) = E which gives L = 4(L) = E.

Hence T cgb. /

2.1.4., Lemma ¢ If T, M and H are ideals of E such that

TEMcEthen

(a) M c B if and only if T cE and M/T Cq E/T .

(b) (H +T) cgE if end only if H cE and T c B

Proof ¢ Let M Cg E and L be an ideal of E such that T+L = E,.

Then M + Lo T + L =K
:QM"'L’-'EO

= LzE(fOFMCSE)

=> TCSE

Again, as M c E, M/T c E/T is such that

M/T "‘I-/T’E/T
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= (M+L)/q = B/

= M+ L =K

= L =E (forM cE)
= L/T = E/T
Therefore, M/ cg E/p .

Conversely, assume that T cg E and M/q g E/p .

Now, if L is an ideal of E such that

M + L = E, then

M+ L+T=E+T=E5F

= M/p + (b+ 1)/ p = E/p (as T gl i)

(o 1)/p = 8/p (for Wy e o By )

= L+T-=E

E).

I

E (for' T

= L g

-

Thus, M + L = E = L = E,

Hence M <4 B Vi

(b) Assume H + Tcg E (H + T is an ideal of E for H,T are

ideals of E).
If L is an ideal of E such that

H + L = By then

H+L+T=E+T=E
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= (H+T) + L = E (for H,T,L are ideals of E)

= L=E (asH +T g E.)

= H = E,
Similarly we can show that T cg E

Conversely, assume H CSE and T Cq E.
Let L be an ideal of E such that

H+T+L =E, then
T+ L=E (forH g E)

=> L=E (.fOI“TCsE)

Therefore, H + T g k. /

2.1.,5., Lemma 8 If T, M and L are ideals of E such that

TcsMthhenTcsL.

Proof ¢ Let X ( ¢ L) be an ideal of E such that

T+ X=1L
= (T+X)NM=LNM
= T+ (XNM) =M, (for TcMclLand 1.2,36)
= XNM=M, (asT c, M)
= TcM=X0NMcX

Therefore, L =T + X = X, (for T c X)

'Thus, T cg L. /

2.1.6. Corollary ¢ If T and M are ideals of E such that

T c, M then T g B



Proof 3§ Considering L = E in 2.1.5, we get the required

result, /

2.2, Essential ideals and essential N-subgroups.

2.2.1. Definitions : let A and B be two N-subgroups of E

such that A ¢ B then A is said to be an essential N-subgroup of B
(denoted A ¢ 4 B) if any N-subgroup C ( # 0) of B has non-zero

intersection with A. When A ¢ B, we say B is an essential

extension of A in E. Here an essential left N-subgroup A of N

will mean an essential N-subgroup of NN.

An ideal M of E is called an essential ideal of E (denoted
Mg, E) if for any ideal C ( £ 0) of E,M NC # (0). If a left

jdeal A of N is an essential ideal of NN then A is called an

essential left ideal of N.

2.,2,2, Example (J(22), Page 342-343 [42]) &

The group N = {0,1,2,3,4,5,6,7} under addition modulo 8
is an N-group w.r.t. the multiplication defined by the following

table

0 1 2 3 4 5 6 7
6 0 0 0 0 U 0 0 0
1 0 0 0 2 0 4 4 2
2 0 0 0 4 0 0 0 4
3 0 0 0 6 0 L 4L 6
4 0 0 0 0 0 0 0 0
5 0 0 0 2 0 4 b4 2
6 0 0 0 L 0 0 0 4
7 0 -0 0 6 0 4 4 6

Table ¢ 2.1,
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N-group yN has two non trivial N-subgroups {0,4} and
{0,2,4,6}. Hence each of them has non zero intersection with other
N-subgroups of NN and so each of them is an essential N-subgroup

of \N. also {0,4} ¢ . {0,2,4,6} which shows the validity of the

following lemma.

2.2.3., Lemma ¢ If A,B,C are N-subgroups of E such that

AcBgCthenAc Bg , C if andonlyifAEeC.

Proof ¢ Let P be a non-zero N-subgroup of E such that P c C.
Since B g ,C, BN P £ (0).

Also, BN P c B and A ¢  B. So (BWP) N A # (0).
Therefore, P N A3 (B NP) N A # (0).

Hence A ¢ o C

Conversely, let A c e C. Then AN B £ (0), (for B cC).

If M is a non-zero N-subgroup of E such that M ¢ B ¢

then, by 1.2.25, M is a non-zero N-subgroup of C. Since A ¢ _ C,

it follows that A N M £ (0) which gives A ¢ e B

In
Q

in
(o]

Again, if H 1s any non-zero N-subgroup of E with H
then A N H # (0), (for A g, C).

So, AcB = (0) #ANHCBNH.

Thus, Bg , C. /

2.2.,4, Lemna [[15]] 3 Let A and B be two N-subgroups of E
such that B ¢ _ A. If a ( # 0) € A then there exists an essentig]
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N-subpiroup L of y such that La ¢ B La # (0).

Proof : Write L = {n e N | na € B}. Clearly, La ¢ B c A

and Na ¢ A as A is an N-subgroup of N, a ¢ Af
Since 1 € N, Na # (0). Again, B ¢ e A £ives B N Na # (0).
Let (O # ) b e BN Na. Then b =na (say) for n & N. Thus
b = na € B which gives n € L. Hence b = na ¢ La.
Therefore, La # (0) (for b £ 0).
Now, let x,y € L then xa, ya € B.
So, (x = y) a = xa - ya € B,

@ X—}’ELo oo 0 (j.)

Also, since B is an N-subgroup of E, for n ¢ N, (nx) a

n(xa) € B (for xa e B).

Therefore, nx € L ces (11)

Thus L is an N-subgroup of NN .

Again, for an N-subgroup I ( £ 0) of \N ,

Ia = (0)
= IacB
= IclL

= LNnI-=1I}4#(0)
And, Ia # (0)

= B N Ia # (0), (for Ia is an N-subgroup of A and

Now, let (O;é)XEBnIathenX'—‘b:aaforbeB’

a e I.
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Then aa € B

= a € L, (by choice of L)
= aelLNI.

Now, a = 0 = x = 0, a contradiction,

So, L N I# (0).
Therefore, L is an essential N-subgroup of NN such that

La ¢ B and La ¢ (0). /

In an N-group E, the subset Z,(E) = {ue E | Lu = (0), for

some essential N-subgroup L of (N} plays an important role in

what follows,

2.2,5. Lemma ¢ For an x ¢ E, Ann(x) is an essential

N-subgroup of NN if and only if x ¢ ZI(E)°

Let Ann(x) be an essential N-subgroup of NV. Then,

Proof &
by 2.2.4, for 1 € N there exists an essential N-subgroup L of

NN such that L.1 # (0) and L.1. ¢ Ann (x).

So, L ¢ Ann (x)
= Lx = (0)
= X € Zl(E)-

Conversely, let x € Z2,(E) then Ax = (0) for some essential

N-subgroup A of yN. Thus A ¢ Ann (x) ¢ yN. Hence by 2.2.3,

Ann(x) is an essential N-subgroup of NN' /4

2,2.6. Lemma [[15]] ¢ If I is en N-subgroup of \N and

for B c E, Ann(B) ¢ el and Zl(E) = (0) then Ann(B) = I,
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Proof ¢ Let ( 0 #) x € I then by 2.2,4, there exists an

essential N-subgroup L of \N such that Lx-# (0), Lx c Ann (B) .
So, (Lx) rg(Ann(B)) g Ann(B) rg(Ann(B)) = (0) [by 1.3.11]
= L(x ry (Ann(B)) = (0)
= x r (Ann(B)) € 2,(8) = (0)
= x e Ann (r, (Ann(B))) = Ann(B), [by 1.3.19(b)]
= I ¢ Ann (B)

Now considering the hypothesis, we get Ann(B) = I. /

Definitions ¢ An N-group E is said to be an N-group
if any ascending chain Ann(Ml) c Ann(mz)

202070

with acc on annihilators

c Ann(M3) c ... 0f annihilatorg of subsets My, Mo, Mzyoos of E
stops after a finite steps. Similarly, we can define an N-group

E with dcc _on annihilators for the descending chain.

2,2.8, Lemma [[15]] ¢ Let & be with acc on annihilators

such that Z(E) = (0). If N has no infinite direct sum of left

ideals and every essential left ideal of N is an essential

N-subgroup of yN then N satisfies the dcc on annihilators of
subsets of i.

Let X and Y be subsets of k such that B = Ann(X)

®

PrOOf .

and C = Ann(Y). Thus, B,C are N-subgroups of N [by 1.3.3].

Now, if Bc C and B is an essential N-subgroup of C then

by 2.2.6, B =C as B = Ann(X). Hence B is not an essential
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N-subgroup of C. So, there exists an N-subgroup D( # 0) of NN

such that D g C, B N D = (0).

Let Ay D A; D> Az D ... be a strictly descending chain of

annihilators of subsets of E. Since Ai ) Ai+i’ by the above

argument, there exists an N-subgroup P; ( # 0) of y such that

Consider M = {xm}, the family of all left ideals of N such
that Ajq nx = (0). The union of each chain of M is again a
left ideal in M and satisfies the conditlion Ay N X = (0).
Thus, by Zorn's Lemma in 1.4.2., M has a maximal element X, (say)
such that A 4 N Xy = (0) - (1)

Again, Ai+1 and Xi being left ideals of N, Ai+1 + Xi is also
a left ideal of N.

Now, let V be a left ideal of N such that (Ai+1+ X;) NV =(0).

Now, ai+1 = xi + v, for some aifi £ Ai+1' xi € Xi, velV.

= Vv =-X5 +t8,4E¢ X1 + Ai+1 = Ai+1 + xi

ve (Ajyqt xi) nve=(0)
= ai+1 = xi € Ai+1 n Xi = (O)
Ai-l"l ] (xi + V) = (0)

Since X is maximal with condition Ai+1 n xi = (0), it

follows that X; + V = X; @8 Xj ¢ X; + V. This gives V ¢ X; and
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soV=VNnX VN (Ai+1+ X;) = (0).
Thus, Ai+1 + Xi is an essential left ideal of N such that

Ai+1 nx; = (0) and the assumed hypothesis gives that A1+1 + Xi

is an essential N-subgroup of \N. And so for P;, chosen above,

Py N (Ag,q + X)) # (0).

Suppose, a = Py = 83,9 * X3, forpy € Py, 85,9 € Ay
x; € X;. Then, X; = = 85,9 + Py € Ajyg +P5 g hy +Py, for

Now, if x; = O then py ¢ Ai+1 which gives p; € A1+1“ Py = (0).

So,pi-?o.

Hence Xj # 0 and therefore A; N Xy £ (0) .

Let C; = Aj N Xy, a non-zero left ideal of N.

Then, C; N A,g = (A N Xg) MAgy

(A MAy) N Xy
=Ajq N Xy, (88 Ay 2 A54)
= (0), [by (i1)]

Therefore, when Aj 3 Ajpr ve get a non-zero ideal

such that Cy N Ay p = (O) e .. (111)
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Now, for different values of i, we get an infinite family
{C,l, Co, Cj, ...} of non-zero left ideals of N such that (iii)
hOldS.

A].SO, Ci = Ai n xi E Ai PP (iV)

Therefore, C; N G, ¢ Cy N Ay = (0), [by (iii) and (iv)]
Again, Ci N (C2 + Cj) c Ci n (A2 + A})r [by (iv)]

[ Cl n Az, as [\2 D A3

= (0), [ by (ii1)]
= Cy N (C, +C3) = (0) cee (v)
And if x € C, N (C'l + C3) then

X = C2 = Ci + C}, for Ci £ Ci’ i-= 1,2,30

@C1=02"05€C2*C3

So, Cp € Ci n (Cg + Cj) = (0), [by (v)]

%ci.zo and c2=c3603.

= ©c,€eCpNC3cCpNAz=(0), [by (1i1) and (1v)]

= ¢, =0 and hence Cr N (Cq + 03) = (0).

Similerly, G5 N (Cq +Cp) = (0). Thus Cy @ C, ® G5 is

a direct sum of non-zero left ideals of N.

proceeding in this way, we find an infinite direct sum

Cq ® C, 43 03® ... of nonzero left ideals of N. This goes
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against our hypothesis and hence there exists a t e z% such that

Ay = A4 = Ap,o = ... Therefore, N satisfies dcc on annihilators

of subsets of E. /

2.3. The Associated Primes of N-groups,

2.3.1. Definitions [[15]] ¢ A non-zero N-subgroup M of

E is said to be a prime N-subgroup of E if for each non=zero

N-subgroup T of M, ann(T) = Ann(M). If £ is a prime N-subgroup of

itself then E is called a prime N-group. It is noted that (0) is

not a prime N-subgroup of E.

Example of such a prime N-group is given below,

2. 3.2, Example (H(70), page 341-342 [L2])
N = {o,a,b,c,x,y] is a near-ring under the operations addition

[defined in table 3 1.3(1)] and multiplication defined by the

following table.

. 0 a b c X y
0 0 0 0 0 0 0

a 0 a a a 0 a
b 0 b b b 0 b
c 0 c B ' 0 c
X 0 X X X 0 X
y 0 y y y U y

Table ¢ 2.2,
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This N-group yN has N-subgroups {0,a}, {O0,b}, {O,c}, {0,x,y}

and \N. Annihilator of each of the above subgroups is {0}. So

N-group yN is a prime N-group. V/4

2.3.3. Lemma ¢t If N is d.g. then Ann(M) of a prime

N-subgroup M of E is such that for any invariant subnear-rings

B and C of N, BC ¢ Ann(M) implies either B ¢ Ann(M) or C ¢ Ann(M).

Proof : We have from 1.3.5. that Ann(M) is an ideal of N.

Now, if C ¢ Ann(M) then CM # (O).

But (BC)M = (0) as BC c Ann(M)

(0)

= B(CM)

= B ¢ Ann(CM). cos (1)

Again, CM ¢ M and CM is an N-subgroup of M. For this, let

I cymy € CM, for ¢; € G, m; e M. Obviously, CM is a subgroup
fin
of M. Now, for n ¢ N, we have n fz cymy = (Z Si)m’ where

in J

cymj € M and n = £ sJ, 338 are distributive elements
J ,

m= X
fin

of N.

3m

erefore ni cym =(L s
Th * Tgin t1 J

= z(sjm), as M is an N-subgroup of E,
J

§ [ i Sj(cimi)] » @s 8, s distributive
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= X s
3 [ § ( jci)mi]’ where Sjci e C.

=ff ¢’m”, where ¢’ € G, m’ e M.
n

Thus, nrf cymy € C M. So CM is a non-zero N-subgroup of M. But
n

M being a prime N-subgroup of E, it follows that Ann(M) = Ann(CM).
So, B ¢ Ann(CM) = B ¢ Amm(M) . /

Now we give the following.

2.3.4, Definition s An ideal I of N is called a strictly

prime ideal of N if for non-zero invariant sub near-rings A and

B of N, AB c I implies either Ac I or B ¢ I.

Thus we immediately have the following result from 2.3.3.

Z.3.5, Lemma ¢t If N is a d.g.nr. and M is a prime N-subgroup

of E then Ann(M) is a strictly prime ideal of N. /

Let M be a prime N-subgroup of E. If My is any N-subgroup
of M then any N-subgroup M, of Mi is also an N-subgroup of M,
Therefore, M being prime, Ann(M,) = Ann(M4) = Ann(M). So, My 1is

a prime N-subgroup of M. Thus, we get

2.3.6. Lemma ¢ If M is a prime N-subgrow of E then any

N-subgroup Mi of M is again a prime N-subgroup of M,



51

Moreover, if Mi is a prime N-subgroup of M then clearly Mi

is a prime N-subgroup of E. /

2.3.7. Theorem [[15]] : An ideal P of a d.g.nr. N is a
strictly prime ideal if and only if the near-ring N/p is a prime
N-group.

Proof : Let N/P be a prime N-group. Also, let B and G be

two invariant subnear-rings of N such that CB ¢ P.
Now, let B £ P then C(B+P) c CB + P.

For, if c ¢ C, b € B, p € P then c(b+p) e C(B+P).

Thus, c(b+p) = ( I si)(b+p), where ¢ = I s;, for distributive

elements S of N.

L]

Hence c(b+p) = Z(s;(b+p))

= L (s;b + s;p)

= L (s;b + pi), where p; = s;p € P,

L (s;b) + p', for some p e P as P is an ideal

of N.

(Zsi) b +p
= cb + p’e CB +P

=> G(B+#) c CB + P c P+P, (by supposition),

= C(B +P) cP

#C(B*'P)/P = P
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= (C(B +P))/p =P

= G ¢ Ann ((B ¥ P)/P ) voe (1)

Now, B being a left N-subgroup of N and P being a left ideal
of N, by 1.2.28, B+P is a left N—-subg’roup of N. Thus B+P is an

N-subgroup of yN. Hence by 1.2.39, (B+P)/P is an N-subgroup of
the N-group N/P’

But N/, is a prime N-group and hence Ann(N/p)=Ann ((B + P)/P)-

Thus (i) gives, C ¢ Ann (N/p) ... (ii)

Now, x e Ann ( N/p) = x ( N/P) = P
= XN cP

= XxeP, forleN.

Thus, Ann (N/p) ¢ P. So (ii) gives, C ¢ P.
Hence P is a strictly prime ideal of N.

Conversely, let P be strictly prime ideal of N. Now, if

M/p( # P) 1is an N-subgroup of N/p then by 1.2.39, M is.an
N-subgroup of NN , such that P ¢ M ¢ N and by 1.3.5. Ann (M/P)
is en ideal of N/p. Hence Ann (M/p) is an invariant subnear-ring
of N.
Again, X € Ann(M/P) = X (M/P) =P
= XM E:P

= (Ann(M/P)) M c P,
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Therefore, Ann(M/P) (MN) = (Ann(M/P)M) NcPNcgP asP is
an ideal of N.
So, Ann(M/p)(MN) c P (iii)

Also, since M is a left N-subgroup of N, MN is a left as

well as a right N-subgroup of N. Hence MN is an invariant subnear-

ring of N.

Now, as 1 € N, M ¢ MN and therefore it follows that M ¢ P

if MN ¢ P. And this is not true for M/p # P.

So, MN £ P and P being a strictly prime ideal of N, it

follows from (iii) that Ann(M/P) c P.
As P is an ideal of N, we have PM ¢ P and P(M/P) = P.
So P ¢ Amn (r41/p). Hence Ann (M/p) =P , |
Similarly, we get Ann(N/P) = P,

Thus, Ann (N/p) = P = Ann (M/p)
Therefore, N/p 1s a prime N-group. /

In what follows N will meean a d.g.nr. with 1,

5.5.8. Definitions [[15]] s The collection # (E) = {P|P =

ann(M), for some prime N-subgroup M of E} is said to be the family

of associated strictly primes of E. Clearly, Q@) =g.

An N-group E 1is called primary if ﬁ(E) is singleton. Thus,

a prime N-group is always primary.
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The following example shows that the converse is not always

true.

2.3.9. Example [[15]] 3 Consider Z4( = E) the Z-group of
integers addition modulo 9.

Here Ann(E) = <9> and G = {6,3;@} is a Z-subgroup of E

where Ann(G) = <3>. Clearly, Ann(E) # Ann(G). So E is not a

prime Z-grouwp.
On the otherhand, G being of prime order, it has no non-zero

proper Z-subgroup. So, G is a prime Z-subgroup of E. Moreover, G

is the only sub-group of E with 3 elements. Since E has 9 elements,

it cannot have any other non-zero proper subgroup of order other

than 3. Thus G is the only prime Z-subgroup of E. Hence
A(E) = {Ann(G)}, which is singleton, So E is primary but not

prime. /
Theorem [[15]] ¢ Let E be with acc on annihilators

2.3.10.

Proof ¢ As the zero group has no prime subgroup, we have

E = (0) = AHE) = 2.
Conversely, let E # (0). Then the familyyfa {Ann(M) | M is

a non-zero N-subgroup of E} £ 0.
Since E satisfies the acc on annihilators, ¥ contains a

maximal element (say) A““(mi)'
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We claim that Mi is a prime N-subgroup of E. For any non-zero

N-subgroup M, of My, we get Ann(M,) > Ann(Mi). By maximality of

Ann(Mq), it follows that Ann(My) = Ann(M.). Hence My is a prime

N-subgroup of &, Thus Ann(My) e # (E). In otherwords, § (E) # @ .

Hence the result. /

£,3.11. Definition : Let £4, Ejy, E3 be N-groups then the

sequence (0) = E4 £.E2 & E3 -~ (0) where f and g are N-homomorphims,

an exact sequence if Im f = Ker g. Exactness of the

is called
N..

sequence asserts that f is an N-monomorphism and g is an

epimorphism.
2,3.12. Theorem [[15]] ¢ Let E;, E, E, be N-groups with

fg &
an exact sequence (0) = Ey E 2 E, ~ (0) then A () c(E) ¢

A (Ey) U A (E).

Proof s Since f is injective and g is surjective, E = (0)

gives By = (0) = E, and thus the result follows.

Now, let B £ (0). The injectivity of f gives f(Ei) c E and

we can regard bij (= £(E4)) as an N-subgroup of E.
If Ann(Mﬂ) G:JQ(Ei). for some prime N-subgroup M, of Eq, then

Ann(My) € jQ(E) also, for M4 is also a prime N-subgroup of E

[by 2.3.6.] Thus, ¢J(Ey) & A(E).
Again, let Ann(M) e\ﬂq(E). for prime N-subgroup M of E. Then

by 1.2.23, M N Eq is an N-subgrowp of E{ as well as M (and hence

of E).
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Now, if M N Ej # (0), then M beins a Prime N-subgroup of E,

we get M n Eq 1s also a prime N-subgroup of E (by 2.3.6) and

hence of El‘

So, Ann(M) = Ann(M N E,) e (Eq)
Thus, A (E) ¢ 4 (E4) .
Again, if M N E) = (0) end h = gl (the restriction of g to
M) then for m e M, h(m) = O implies g(m) = O .
= m eKerg:Imf=f(E1)‘
= m eMﬂf(Ea_)?—-'MﬂE,l= (0)
Thus, m = O which gives h is injective.
Hence h(M) = M.
So, M ( ¢ E;) 1s a prime N-subgroup of E,. Therefore,
Ann(M) € ﬂ(Ez) which gived 4] (E) c &.Q(Ez) giving thereby
A () ¢ AEY VA (E;).
Thus, )l (By) € A(E) ¢ A(Eg) URA(E) . /

Now we give an example in which the equality between g (E)
and ] (Eq) U (B,) fails.

2.3,13, Example [[15]] 3 If E = Z, the group of integers,

kg = 22 and E, =Zfogthen QE) £ Q(E)) VA (E,).
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Now, if M N E, # (0), then M bein: a prime N-subgroup of E,
we get M Nl E4 is also a prime N-subgroup of E (by 2.3.6) and

hence of El'
So, Ann(M) = Ann(M N Ey) ¢ 5Q (Eyq)
Thus, A (E) ¢ 4 (EB4)
Again, if M N Ey = (0) and h = glM (the restriction of g to
M) then form ¢ M, h(m) = O implies g(m) = O .
= me Kerg=1Inf = f(Ei)l
= meMﬂf(Ei)gMﬂE,la (0)
Thus, m = O which gives h is injective,
Hence h(M) = M.
so, M ( g Ep) is a prime N-subgroup of E,. Therefore,
ann(M) e #(By) vhich gived L (E) ¢ A (E;) giving thereby
A (E) g AE) VA (E).
Thus, d(B)) € AE)  A(E) UANE) . 7

Now we give an example in which the equality between #](E)
and ﬂ(E,l) UjQ (E,) fails.

2.3.13. Bxample [[15]] 8 If E = Z, the group of integers,
By = 22 and Ep =Zfgzthen AE) £ AE) VR ().
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Proof : (Z,+), (2Z,+) and (Z/;l%, +) are Z-groups and we

get an exact sequence
(0) =22 - Z = :z/;;z» (0)

But 2/22:= Z, contains only two elements. So it has no non-

zero proper subgroup., Therefore, 2‘2 itself is the only prime

Z-subgroup of it and Ann(2,) = <2> . ( =22),
Now, #H(2Z) U J‘Q(Qf/zx)
=A@z) v d(z,)

= (0) U2z =22

But A(2) = 0. Thus, Q(2) # A (22) UA @2x) /

2.3.14, Theorem [[15]] s If E, end E, are two N-groups then

A (Ey @ By = AE) VS (8;)

Proof t An arbitrery element of () (E; @ E,) is Ann(M),
where M is a prime N-subgroup of £4 € E,. Now, M = My ® My

where Mﬁ. and M, are N-subgroups of Ey and E, respectively.

Since cach of M, and My can be regarded as an N-subgroup of

M, it follows that M, and M, are prime N-subgrpups of M,

There fore, Ann(M,l) = Ann(M) = Ann(M,).

Again, Mi and I‘Jl2 are prime N-subgroups of E1 and E2 respectively

also, It follows that
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Ann(M) e L;ﬁ}(Ei). A (E5)
Thus, Ann(M) € \yq (Ei) U ﬂ (Eg)
so, &4 (B4 P Ex) ¢ A(Eq) U H (E,).

To get the opposite relation, let M e\yQ(Ei) U Jﬁ].(EZ).

For definiteness, let M € \54 (Ei)° Then M = Ann(S), for some

prime N-subgroup Sof Eq. Hence S is a prime N-subgroup of
Ey @ E, also.SoMe A (g B Eyp).

Therefore, yﬁ] (.‘6‘.1) U ﬂ(Ez) c ‘ﬂ (Ei @ E2) glving us the

required equality. /

2.3.15. Theorem [[15])] ¢ If M and Q are N-subgroups of E

and T is an ideal of E such that T ¢ M, Q@ then
A (@0 @) =AW 0 8/g) € J0i/g) 0 4Gy

proof t Since M,Q are N-subgroups of E and so by 1.2.23,

M N Q is also an N-subgroup of E, Also, T c M, Q gives TcMNAQ.
Thus M/T' Q/T’ (M N &)/T are N-subgroups of E’/T (by 1.2.39)‘.

So M/qp N W/ 1S also an N-subgroup of E/qp,

Again, M N @ ¢ M,Q and SO M0 Q/rcWyp o W

Theréfore, (M N Q)/p < Wrp N Wrp

Now, if Ann(S/T) Cﬂ((m f\Q)/T), for some prime N-subgroup
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S/T of (M N Q)/qp then S/p is also prime N-subgroup of

M/p N @/p which gives Ann(S/q) eﬂ(M/T n Q/q)
Therefore A (M N Q)/7) ¢ AM/p N W) (1)

Conversely, let Ann(H/g) € jQ(M/T n Q/T) for some prime

N-group H/T of M/T n Q/T. Then H/T c M/T’ Q/T
= HcHM, (11)
> HcMNQ
= H/qog MNnQ)/p
Hence H/p is a prime N-subgroup of M n Q)/T. Thus,

Ann (H/p) e A(M N Q)/p and so AM/p 0 Q/g) ¢ UM N Q)/p)

Therefore, (i) gives, JQ(M n Q)/T = JQ(M/T n Q/T).

Again (ii) implies that H/p is a prime N-subgroup of M/n
and Q/p. Thus, Anmn(H/¢) € N (M/p) and Ann(H/g) € A(e/p). So
ann (/7)€ A W/p) 0 AWg).

Therefore, AM/p N ¥/p) ¢ AM/7) N A(Wg) o /

2.4, N-groups with finite spanning dimension

It is seen that Fleury [18], Rengaswami [43] and Satyanarayana

[44, 46] have studied some properties of modules wkh finite
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spanning dimension (fsd). The authors of [8)] and [12] have also

Studied N-groups with finite spanning dimension. We define fsd

here in a different way.

2.4.1, Definitions ¢ An ideal J of an N-group E is said to
be an ideal with fsd-1 if for every strictly descending sequence

J 5 J; 2Jy > ... of ideals of E there exists an 1 e z* such that

J J for all j 2 i .

J s

An N-group E is called an fsd-1 N-group if E is with fsd-1

as an 1ideal.

It is clear that if every ideal of E is with fsd-A then E
is an fsd-1 N-growp,

2.’4.2. PI‘OpOSiti(_)_r_l [[15]] ¢ If E is an _de—'l N..groUP and H
is an ideal of E then E/H 1s with fsd-1.

E oy,
Pr'OO.f e Let E/H - 1/H o H D eeoe (i)

be a strictly descending chain of ideals of E/y. Here Ei’EZ'Ea"'°

are ideals of E and each one containing H.

Thus, the chain (i) gives us another strictly descending
chain E o B{ o By o .eo of ideals of E.

Since E is fsd-1 N-group ', : there exists ajezt

such that Ei CS E for all 1 2. ,jo

Now, if possible, let for all i, Ei/H £ s E/H° Thus, by
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2.1.4(a), E; ¢ , E for all i. This gives a contradiction wilh

E{ cg E for i 2 j. Hence our supposition is wrong and so there

(7]

E By
exists at least one /H - (1) such that I/y S E/y «And

thew E/, is with fsd-1. y

2.4,3, Definition : An ideal Ei and an N-group E is said

to be hollow if every ideal L ( < Eq) of E is small in By

It follows immediately from 2,1.4 that

2.4.4, Proposition ¢ If L is a hollow ideal of E then all

the ideals of E properly contained in L are small in E, V4

The definition of a supplement here is an extension of the
definition due to Satyanarayana [44],

2.,4.,5. Definitions 3 An ideal M of E is said to be g

/
supplement of an ideal M of E if M + M/n E, L + M’ﬁ E for any
ideal L (cM ) of E. .

By a supplement M in E we shall mean M is g supp lement of

some 1ideal Mi of E in E.

2.4,6, Proposition t If L, and L are ideals of E such

that L, gg L end T gL, for any ideal T(c L;) of £ then L is

hollow,

proof ¢ Let L, be not hollow., Then there exists an ideal A
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of E with A < L, Such that A y_‘s Lo Thus we get an ideal B of E

with B c L, such that A + B = L P (1)

Agein, since L, £L then there exists an ideal X, (e L) of E

such that

LO+XO=L.
= A+B+X =1L, [by (1)] . o (11)

Now, since A is an ideal of E with A < L, and so A ¢ g L

by our hypothesis., Thus (ii) gives B + X, = L. Again, by the

similar ergument, we have B < g L+ Hence X, = L, a contradiction,

Therefore L, is hollow.

This result propels us to the following,

2.4,7. Remark : If L, and L are ideals of E such that._ |

L é g L and L0 is not hollow then there exists gt least one
o

ideal Li ( c LO) of E such that Lﬂ. & 5 L .

2.4.8. Proposition & If an ideal L of E is with fsd-1 and

Lo( c L) is an ideal of E such that L, < g L then Lo contains g

hollow ideal H of E with H £ ( L .
Proof s If Lo is hollow then we are done, If Lo is not hollow

then by 2.4.,7 we have an ideal Ly( < L,) of E such that Ly ¢4 L.
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of E with A ¢ L, such that A £, L . Thus we get an ideal B of E

with B < L, such that A + B = L ¢ - - (1)

Again, since L, gL then there exists an ideal Xo (€ L) of E

such that

L +X0=L.

o

= A+B+X =1L, [by (1)] ce e (1)

Now, since A is an 1deal of E with A c L, and so A c g L

by our hypothesis. Thus (ii) gives B + X, = L. Again, by the

similar argument, we have B c g L. Hence X = L, a contradiction.

Therefore L, is hollow. V4

This result propels us to the following.

2.4,7. Remark 3 If L, and L are ideals of E such that

L, £ g L and L is not hollow then there exists at least one
0 r

ideal Ly (cLy) of B such that L, £ ¢ L .

2.4.8. Proposition 3 If an ideal L of E is with fsd-A and

Lo( c L) is an ideal of E such that L, £ g L then L, contains a

hollow ideal H of E with H £ s L.

Proof s If L0 is hollow then we are done, If Lo is not hollow

then by 2.4.7 we have an ideal Ly( < Ly) of E such that L, ¢ ; L.
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Now, if Ly is hollow then we are done. If not, we get a

strictly descending chain Ly o Ly o Ly, o ..., where each ideal
Ly & s L
But L being with fsd-1, there exists an ideal Lj such that

Lh( c LJ) is small in L for a 2 j. And this is a contradiction.

So, one of the L}® (say H) must be hollow and is such that
He g Lo /

As a corollary to the above result we get

2.4,9, Corollary [[15]] ¢ If E is an fsd-1 N-group then

every non small ideal of it contains a hollow ideal H with
Hgg B

proof ¢ Consldering E as an ideal of itself, the result

follows immediately from 2.4.8. /

2.4,10 . ggoposition t If an ideal L of E is with fsd-1

then every ideal M ( ¢ L) of E has a supplement in L,

proof ¢ Case (i) ¢
M

Let M = L then L + (0) = L and clearly (0) is the supplement
of L in L.
case (11) ¢

E with M + X = L vwe get X = L.
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So, for any ideal X4 { c X) of E, M + X4 AL. Otherwise,

M + Xﬂ. = [ = Xi = L = X, Thus L is a Supplement of M in L.

Next, if M ¢# . L, then there is an ideal X, (€ L) of E

such that M + Xo = 1.

Now, if X, is a suoplement of M in L then we are done., If

not, we get an ideal X4 ( ¢ X)) of E such that M + Xqg = L. If

a contradiction. Therefore, X4 & gLe

Xi C g I, then M = L,

If x1 is a supplement of M in L then we are done. If not,

we get an ideal X2 ( Xi) of E such that M + X2 = L. By the

similar argument as above we have X5 £ o L.
Proceeding in this way, we get a strictly descending chain

of ideals of E.

vhere X; is not a supplement of M in L and X; 4 ¢# o L (1=0,1,7,...)

Since L is with fsd-1, we get a t € 2% such that X, & L for

all @ > t and this is clearly a contradiction. So the process must

come to an end after a finite stegps. In otherwards, we must

7

have some t € z* such that Xt( c L) is a supplement of M in L,

2.4.11. Corollary [[15])]) 3+ If E i5 an fsd-1 N-group then

every ideal of it has a supplement.,

pProof s Considering E aS the ideal L in 2,4,10, the result

follows immediately. /
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2.4,12, Proposition t If E is an fsd-1 N-group and L,H are

two ideals of E such that L( # E) is a supplement of H in E then

H contains a supplement of L in E.

Proof Since L is a supplement of H in E then L + H = E

end Ly +H # E for any ideal Ll( c L) of E,

Now H Cg E=L=E, a contradiction,

Therefore H ¢é E.

If 4§ is a supplement of L in E then we are done. If not,
then we have an ideal Hj( c H) of E such that L + Hy = E. Clearly

as above, Hy #£q E-

Again if Hy is a supplement of L in E then we are done., If

not, we get an ideal Hp ( € Hy) of & such that L + H, = E and

hence H, £s B

proceeding in this way we get a strictly descending chain

of ideals of E ,

HoHy oHy> ... where H, Hy £ E (for all 1)

s the fsd-1 character of E. 80 there must exist

This contradict
c H) of E which is a supplement of L in E, /

an ideal Hi (

corollary [[15]] ¢ If E is an fsd-1 N-growp then

2.#013'

every non small ideal of E contains a non-zero supplement inE,
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Proof i Let I be a non small ideal of E. Then by 2.4,11, we

get an ideal M(say) of E such that M is a supplement of I inE,

So, M + I =E and My + I # E for any ideal My ( M) of E,

Thus by 2.4.12, I contains an ideal I, of E such that I, is a

supplement of M in E.

Therefore, M + Iy = E and M + I, # E, for any ideal

Now if Ii = (0) then M = E. Thus M + I = E implies I csE,
a contradiction. Therefore, a non small ideal I contains a non-

zero supplement I; of M in E. /

¢ If an ideal L of E is with fsd-1

2.4,14, Proposition 3
o t
then there is a t ¢ z' such that L = & L; where each ideal
i=1 :
t
L, ( gL) of & is hollow and i§3 Ly # L, for1 ¢ 1, 3 <t

L and hence by 2.4.8, L contains g

proof ¢ We know that L é 5

hollow ideal Ly(say) of E with L, & o L.
Now, if Lq =1L then we are done. If not, let L, < L then

by 2.4.10, Ly has a supplement X1 in L where Xi ( e L) is an

ideal of E.
So, Ly + %1 =1L . (1)

and Ly + ¥q # L for any ideal Y ( c Xy) of E.
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If Xy cg L then L, = L [from (i)], a contradiction.

So X, £, L. Hence by 2.4.8, X, contains a hollow ideal L, (say)

with L, ¢S L.
Now, if L, cg X1 then by 2.1.5, L, g L, a contradiction,

Thus L, ﬁs Xy o Therefore, there exists an ideal X (e Xi) of R

such that
Ly + X5 =% oo (i1)

Deletion of any one of L, and X2 will give a proper subset
of X;. Thus no deletion is possible in (ii).

Again (i) and (i1) give us

L1+L2+X2=Lo

Now, if X, cg L then L, + L, = L and thus the result follows.

And if X, ¢, L then by 2.4.8, X, contains a hollow ideal Ly

(say) of E such that Lz £g L. Repeating the process as above, we

getL=L1+L2 +L3+ooo andaChainL2X1DX23X33...
where each ideal Xilés L and each Ly is hollow, Here we meet a

contradiction with fsd-1 character of L. So we must have some

m e Z+ such that Xh+¢ Cqy L.
And as ve have discussed above,

L =1Ly #+Lp+ eee + Lo * X544 Where each Ly 1s hollow,

Thus using xm+1 Cq L we get
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If Xy c, L then L, = L [from (1)], a contradiction.

So X, £ L. Hence by 2.4.8, X, contains a hollow ideal L, (say)

with L, #&; L.
Now, if L, cg X, then by 2.1.5, L, o5 L, a contradiction,

Thus L, ¢S Xi. Therefore, there exists an ideal X5 ( < Xi) of E

such that

Ly + X5 = X (i1)

Deletion of any one of L2 and X2 will give a proper subset

of X,. Thus no deletion is possible in (ii).

Again (i) and (i1) give us
Now, if X, cg L then L, + L, = L and thus the result follows,

And if X, #; L then by 2.4.8, X, contains a hollow ideal Ly

(say) of E such that L #s L. Repeating the process as above, we

get L = Ly + L, + L5 + ... and a chain L g'xl =) X2 o X3 D eee

where each ideal X; #g L end eech L, is hollow. Here we meet a
contradiction with fsd-1 character of L. So we must have some

m e 2% such that X ., cg Lo

And as we have discussed above,

L = L1 + Lo + oo + Lm+d + Xm+1 where each Li is hollow,

Thus using X .1 Cs L we get
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L=L4.+L2+coo +Lm+d.

t
So, L= L Ly, t=me ez’

i=1

Deletion of any term from the right hand side gives rise g
t

proper subset of L. Hence no term can be deleted amd so Ly # L
1£]

fori<j3<t. /

2.4,15. Corollary [[15]] 8 If E is an fsd-1 N-group then

t
there is a t ¢ Z+ such that E = ¢ Ei’ where each Ei is hollow
i=1
t
ideal and £ E; #E for L <1, j < t,
i3

Proof ¢ Considering E as the ideal L in 2,4.14, the result

follows immediately. /

2,4.16., Proposition ¢ If in the above proposition 2,4.14,

r / .
b} ﬁ;, where each ideal Ly ( c L) of E is hollow and

L =
i=1
; E; £ L for 1 i, j{r, thent =r.
143

proof s Let r > t, We first show that for some i(1 1 < r),

L; + L, + Lj $oaes Ly o= L and none of the terms in the sum can

be deleted.
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Suppose that Ly + Ly + Ly + vvo + Ly # L ceo (1)
ThenL/a_+L2+L3+ oo + Ly ALy + Ly + eus + L(= L),
Hence for some ideal U ( c L’l) of E, we get
/
LQ.+L2+L3+.‘.+Lt=U+L2+L3+...+Lt loc' (ii)
/ / / |
Now, L, + Lz teeo # L+ U+ L, t Ly 4o+ Ly
/ / / /
= Lo + Lz + eee + Lo+ Ly + Ly + Ly +eeut Ly [by(ii)]
/ / / + /
'“Li+L2+L3+ooo Lr+L2+L3+ooo+Lt

/ /
=L+L2+L3+000+Lt (BSL-'—"L{L"'oo."'L-P)

= L, since each Li cL

Therefore, if (1) holds then we get

/ / /
L2+L3+,oo +Lr"‘L2+L3+o.o"‘L.t+U=L oo o (ij.i)

And each L; being hollow and U c Ly, So Uy Ly. Thus by

2.1.5, VU ¢, L which together with (iii) give

/ /
L Lyt e #lptlpgalys e vl =L oor (V)
/
Then for some ideal V ( c L{l) of E, we have
t

/ +1,|=V+L + L +...+Lt(s1,=):1,)
I + ¢ Lz ¥ oeo 5 a
2 L2 3 2 101

/ / /
Also, L3+L4+...+Lr+V+L2+L3+...+Lt
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/ / L/ /
= L} + Lh + 00 *+ r + L2 + L2 + o0 + Lt

/ / / /
L2 + Lj + Lh + e o0 + Lr + L2 + L3 + o 00 + Lt

L [by (iv)]

Hence, if (i) and (v) hold, then we get

/ / /
L3 + Lh + oee * Lr + L2 + L3 tooot Lt + V = L.

Now, V Cg L gives.

/

/ /
L3 + Lh + o0 + Lr + La + Lj + LI ] + Lt = L [}

If we continue the process, we finally get

L; + L2 + L3 + see t+ Lt = L and

L3+L2+L3+---+Lt;éLforallj=’l,2,...,r—’1.

/
Thus for 1 < j £ r-14, Ly + Ly + cuut Ly # L implies

/
...+L=L.
LI"+L2+L3+ t

Hence there exists an . 1 £ r such that

L; o+ L2 + L3 + o0 + Lt = L (Vi)

if L; {s deleted from the left side of (vi) then

Now,
= L, a contradiction, If L2 is deleted then

eoe + L
L2+L}+ t

/ =
(vi) becomes L + Lz + Ly + oo + Ly = Lo But Ly + La#..o+ Ly # L.

Hence Ly + Lz + «°° + L =W+Llzg+1ly+ .o+ L, vhere W is an

/
ideal ( c Ly) of E.
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/ /
As Li is hollow and W c Li’ it follows that W = L& and

hence W g L.

Therefore, Ljq + W+ L3 + Lyt oo + Ly = Ly + Ly +...+Lt = L,

=)L1+L3+La+ooo+Lﬁt=L
This is not true. Hence L, cannot be deleted. Similarly we
see that no term of (vi) can be deleted,

Again we are given that Ly + L, + «e0 + Ly =L .. (vii)

Comparing this with (vi), it follows that L, is replaced by

/ / /
some ﬁ; e { Ly» Loy eees L.}. Similarly, each of L., Lgseonsly

/ ! /
can be replaCed by some other members of {Lﬁ’ L2’°”’Lr}‘

Now for simplicity, let us consider that all the terms of
{ /
(Vii) Lﬂ.' L2, RN Lt are replaced by I:i’ L2’ coey L.t reSpectively.

o . / / /
Then we get from (vIi), Ly + Ly + ... + Ly = L and no term can

/ / ¥}
be deleted from the sum. But Ll + Lo + oo0 # Lr = L and no term

can be deleted from this sum, This gives a contradiction. So

r{t and similarly t } r. Hence t = r. /

2 4,17. Definition 3 If an ideal L of E is with fsd-A such
0 . [ ————————
t

that L = I L; vhere each ideal L;j( c L) of E is hollow and no
i=1

term of the sum can be deleted then the definite positive integer

led the spanning dimension of L and is denoted by

t is cal
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As a corollary to the proposition 2,4,16, we get

2.4,18. Corollary [[15]] ¢ If E is an fsd-1 N-group then
there exists a t ¢ z' such that Sdi(E) =t,

t

Proof ¢ By 2.4.15, we get a t ¢ z* such that E = % E1 with
i=1
t
each ideal E; hollow and E #¢ I E, for 1 i, 3 < t,
i 143 i - -

Now from 2.4,16, it follows that such a t is unique. Hence

Sdy(E) = t. /

2.4,19. Proposition ¢ If E is an fsd-1 N-group and an ideal

M of E is a supplement in E then M is with fsd-1,

Proof ¢ Let us consider a strictly descending chain of

ideals of E such that

where M 1is a supplement of an ideal H of E.

Then M + H = E (i1)

and My + H # E, where My ( € M) is an ideal of E,

Suppose Xj ¢g M for each i, Then there exists an ideal A(c M)

of E such that X; + A =M (111)

Since M is a supplement of H in B,

A+HFZE oo (1v)
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Now (ii) gives

(X; +A) +H =E [by (iii)]
= X, +(A+H)=E
= X #.E (because of (iv))

Thus X ﬁs M= Xy ¢ E for each i,

And this contradicts that E is an fsd-1 N-group. Hence we

must have some j such that X cg M for all « 2 j. In otherwords,

M is with fsd-1. /

2.4.,20., Proposition [[15]] ¢ If E is an fsd-1 N-group and

L, M are ideals of E where each of them is a supplement of the

other in E then
5, (8) = Sdq(L) + Sdy(M)

Hence, if Sdq(E) = 5d,(M) then E = M.

proof s Since L and M are supp lements to each other in E

and E is an fsd-1 N-group then by 2,4,19, each of L and M 1is
with fsd-1. And let 8dp(L) =t end Sdy(M) = r [by 2.4.18].

Now, by 2.,4,14, we can write

t

y L;, where each ideal L;( € L) of E is hollow
i=1

where each Mj( c M) of E is hollow and no term of

L =

r
and M = I Mj,
J=1
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the sums can be deleted.

Again, E = L + M as L and M are supplements to each other

and so no I, or M can be deleted,

t r
Therefore, E= ¥ L, + I M, and deletion of anv L
’ 121 i o1 3 any Ly or Mj

is not permissible. Hence E is the sum of t numbers of hollow
ideals Ly and r numbers of hollow ideals MJ and this sum is
minimal as no L; or MJ can be deleted,

Thus, Sdy(E) = ter = Sd,(L) + Sd, (M).

For the next part, if Sd,(L) > O then Sd, (E) > Sd, (M), a

contradiction with Sdi(E) = Sd, (M),

Therefore, Sd,(L) = 0 and so L = (0).

2.,4,21, corollary [[15]]) :+ If E is an fsd-1 N-group then

E satisfies the acc on supplements in E.

PI‘OOf I Le‘t E1 c E2 c E5 C seo be an ascending chain of
supp lements in E.

Here we note that each of E; is with fsd-1 [by 2.4,19].

Since Ej ¢ E, and Bp is with fsd-1, we get by 2,4,10, E,

has g supplement Bi(say) in E, .
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Thus E1 + B1 = E2°

Again, by 2.4.19, B, is with fsd-1

- r t
Now from 2.4.14, let Ey= % Hy» By = £ T, where each
i=1 =1
P
ideal H; and T, of E is hollow, Also let E, = I L where each
i J 2"y K a

ideal Ly of E is hollow with Sdi(Ei) =r, Sdi(Bi) = t and

Sdi(EZ) = p. Then

r t T p
¥ H, + I = ¥ L
=1 1 g J k=n K

= rip
= Sdi(Ei) S.Sdg ( E2).

Therefore, from the considered chain, we get

But Sdl(E) is a definite number and hence for some

Hence by 2.4.20, E, = B,y = «.. = E. Therefore the chain

of supplements must be finite one. So E satisfies the &cc on

supp lements in E. /

2 4,22 proposition [[15]] ¢ If E is an fad-1 N-growp such

that the sum of any two supplements 1is again a supplement, M is g
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supplement ip k£, n ¢ E - E/M is a canonical mapping and A/M is

a supplement in E/M then n-l(A/M) is a supplement in E,

Proof t¢ Let A/y be a supplement of B/y in E/y -

Then A/) + B/y = E/y (1)

=> (A“'B)/M = E/M
= A +B=E
This implies that A contains a supplement Al(say) of B in E,

Thus, A1 + B = E.

Now, if (Aq+ M)/y c A/y thea (A #1) /¢ B/ # By as My
is a supplement of B/y .

But, (Ag+ M)/ *+ B/ = (Aq+ M + B)/)y = (B + M)/, (as Ay +B=E)
= E tradiction.
= E/M> a contira

Therefore, (Aq+ M)/M = Aﬁh
ﬁA1+M=A

Thus 1) ( A/M).-. A=Ag +M .

Since Ai and M are supplements . in E, so A1 + M is also a

-1
supplement in B by our hypothesis. Hence m “(A/y) is a supplement

inE. /
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2.4,23, Proposition : If E is an fad-1 N-group and 1l is a

non-zero suplement in E then E/H satisfies the dcc on ideals

of E/H .

Let a strictly descending chain of ideals of E/H be

(1)

Proof =

. B ‘ E o o o
where ench Ei is an ideal of [ such that £, o H

]. = L]
chain be infinite and correspondingly

If ponsible, let the

we get a ctrictly descending infinile ~haiv of dicdesls of E as

E Di_’:l:‘ 1'12:) P

Since [ is an fed-1 N-proup, thern exists a Jj e 7V suen

that L; < E for 11 1 2 3.

put H ¢ [y for all i, hence by 2,1.4(a), H « . B. Lt H be a

)

SUDDleent cf A in E then H + A = E vhich ~iver A = B as U a Do
Therefore H ic a aipplement of E in E. But E hes unique supplement

(0). Mence N = (0), o cmbrediction,
fore, the chain (1) must be n finite one and so it

There
a finite steps. Hence E/H satisfices 1he dce on

4

stops after

ideals of f/y «

decomposition of (0) in an fsd-1_N-group

2.5, SZP.CE:C

In a unigue factorisation domain, one can express a non
,
44 (.t2 .

product pq~ Po ... Py of positive powers of

unit es a finite
This result can be expresfed in terms of ideals as

distinct primes.
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a a a
K> = K pii >n < p22 >N s N X ptt>

A similer decompositicn of ideal=s of g commutative Noetherison

ring is known, We extend some results analogous to this theory

to fsd-1 N-groups.

5.5.1. Definition [[15]] + For a prime N-subgroup Hy of E,

if there is an ideal H of E which is a prime N-subgroup of E and

H then H is celled a_prime_ideal extension of a prime

N-subgroup Hi'

a left_ideal near-ring N in vhich every left N-subgroup

Also,

is a left ideal is such an example where any prime N-subgromp

-oc cesses a prime ideal extension.

claarly |
».5.2. Exemple (E(13), Pege 339-340, [42]) 1
N {0 a,b,C1 is a near-ring under addition [defined in
= ’ b

tahle 1.1 (j)] and multiplication defined by the following table

. 0 a b ¢
o 0 0 0 0
a 0 a b c
b 0 0 0 0
c Y a b ¢

Teble 3 23
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Here {0,a}, {O,b}, §0,c} and N are non-zero left N-subgroups

of N and each of them is a left ideal of N.

Annihilator of each of the above N-subgroups of NN is
} {0,b} and hence each of them ls a prime N-subgroup of yN. Moreover,

f each of them has prime ideal extension NN. Y4

1

-

2.5.3. Definition [[15]] ¢+ An N-group £ is said to be prime
complete if for any ideal H of E the following condition holds t H'

! . *
| is a prime N-subgroup of E/H implies H has a prime ideal
extension in E/ .

The following example will show the existence of such N-groups.

2.5.4. Exanple (Clay [16], 1968, 7.1.10) :

N = {O,a,b,C} is a near-ring under addition and multiplication

defined by the following tables,

+ 0 a b c . 0 a b c
0 0 a b c v 0 0 0 0
a a b c 0 a 0 a b a
b b c 0 a b Q b 0 b
c c 0 a b c 0 c b c

Table § 2.4,



Here N-group yN has only one non-trivial N-subgroup {0,b}=L
(say). This L is alfo an ideal of NN. Thus L is the prime ideal

extension of prime N-subgroup L itself,
Again, clearly N/, = {0,3} and it is a prime N-group and so
obviously it is prime complete. /
It is observed that there are some near-ring groups in which

the sum of any two supplements is again a supplement. Besides the

trivial cases of N-group E having no other ideal except (0) and E,

we give the following example,

In the example 7.5.c., We observe that

2.5.5. Lxample .

{0,a}, {0,b}, {0,c} are non trivial ideals of (N and each of them

is a supplement in yN. It can be verified easily that the sum of any

two of them gives the N-group NN which is also a supplement.

Moreover this example is sufficient to =ay that supplement of

an ideal need not be unique., For, {0,b} and {0,c} both are supple-

ments of {0,a} in N ./

in what follows fas in [[15]]), we confine our discussion

Now,
ete L where a prime N-subgroup of its factors has

on prime compl
jdeal extension (shortly, a prime complete E with

non-small prime
«tension) and sun of any two supplements is again a

non-small €

supp lement .

2.5.6, Ilheorem [(15]] & Let E be an fsd-1 N-group with acc on
annihilators. If jg(E) = XU Y where XN Y =0 then there exists ga
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/ /
| supplement E in E such that @ (E ) = X and A (E/g!) = Y.

|

|
| Proof : Let Y be the collection of supplements H in E such

| that A (H) ¢ X.

Here 3§# ¢ for H(0) = # ¢ X.

Now, since E is an fsd-1 N-group, by 2.4.21, E satisfies the

acc on supplements in E and hence ¥ has a maximal element E/.

/
Therefore N (B ) c X cos (1)

Again from the exact sequence
' /

as in 2.3.12, we get

A ) cAE) UA @) 1

And this gives

xuve @ VAEG) cxud &) by (D]

Now, since X N Y = @, it follows from the above Y ¢ A (B/g1)-(111)

Suppose, Y c(fl(E/E’). Then there exists a prime N-subgroup

/
' t
H /E/ of E/E/ such tha

!/
Ann( H}E/) 8(9{1(6/5/) and Ann ( H/El) ¢ Y o e, (j_v)

/
Since B is prime complete with non-small extension and H/E/ is

!/
/ -
a prime N-subgroup of E/E/, H/p has a non small prime ideal extension
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H/p/ (say). By 2.4.2, E/p! is an fsd-1 N-group and so [by 2.4.13]
H/5/ contains a non-zero supplement T/’ in B/ gt o

Therefore, 2.4.22 reveals that T is a supplement in E. Also,
Ann ( T/;0) = Ann ( H/p/) as H/z!is prime and so T/ (g H/ps) is

also prime. Thus & (T/g’) is singleton.

So, let & ( T/z’) = {P} v o (v)
Moreover, Ann (H/g/) = Ann (T/ /) =P (vi)
Also, since H}E’ c H/E’ and H/E/ is prime,
ann (H/g!) = Ann (8/g/) =P, [by (v1)]

. .. (vii)

Therefore (iv) gives P £ Y

Again from the exact sequence

(0) &'~ T =~ 1/p/~ (0)

(vhere E'c T) we have, from 2.3.12, A(T) ¢ 4 (8') U A (1/y)

so A(T) ¢ X U {P}, [by (1) end (v)] .. (viii)

Since T ¢ E, by the definition, we get # (T) c A (E).
(1x)

Thus Jq (T) cXuy

Therefore, A(T) ¢ ( X U {P}) n (X U Y), [by (viii) and (ix)]

= Ar)c (X0 (XUY))U{P}N(XUY))

= A) XU (P} n (XUY))

Now, if P £ X then A(T) g X U @, [by (vi1)]
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H/g/ (say). By 2.4.2, E/;/ is an fsd-1 N-group and so [by 2.4.13]
I-I/E/ contains a non-zero supplement T/E/ in E/E/ .

Therefore, Z.4.22 reveals that T is a supplement in E. Also,
Ann ( T/y/) = Am ( H/g’) as H/g/is prime and so T/y/ (c H/p/) is

also prime. Thus # (T/p/) is singleton.

so, let A ( T/z’) = {P} ve - (v)
Moreover, Ann (H/p/) = Amn (T/ /) =P cos (vi)
Also, since H}E/ c H/E/ and H/E’ is prime,
Ann (H,/E/) = Ann (H/E’) =P , [by (vi)]

v o 4 (vii)

Therefore (iv) gives P £ Y

Again from the exact sequence

(0) ~E'=T = T/g'~ (0)

(where E/c T) we have, from 2.3.12, AT) ¢ A (E/) U (T/g )

so A(T) ¢ X U {p}, [by (i) and (v)] ..o (viii)

by the definition, we get A (T) c N (E).
(ix)

Since T ¢ By

Thus JQ (1) g XU Y

[ ] » o

Therefore, (;Q(T) c(xV {Ph) n (xVU Y), [by (viii) and (ix)]

.—.e.;Q(T)g_(xn(XUY))U({P}ﬂ(xuv))

= A(T) ¢
Now, 1f P £ X then A(T) ¢ X U B, [by (vil)]

Xu (fp} n ( XU Y))
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@ (Q(T) g:_ Xo

Again, if P € X then A(T) c X U {p} =

= Q@) cX

Therefore T € ¥p . It contradicts the maximal character of E

/
in ¥§ (since E c T).

Thus we get, ¥ = é]( E/E') .

Also, (ii) giv~~,\)Q (E) c ﬁ(E,) Uy

=> XUY;OQ(E{)UY
-> Xgﬂ(E')o as XNyY=20,

Therefore (i) glves, 5Q (E’) =X. /

».5.7. Theorem [[15]] : Let E be an fsd-1 N-group with acc

on annihilators then JQ (E) is finite.
Let Py € (E) and f) (E) = {P,} U Y such that

Proof &
/
y 2.5.6. we get a supplement E in E such that

Py £ Y. Then b
AE) = {Py)
(1)

and JQ(E/E') =Y
~ Thus, DQ(E) = .;G(E') U i (B/g )

Now, if Py € (E) and P £ Py then P, efl (B ) Ul (E/E/)

= /
So P, € Jﬁ(b/ l) ‘Thus let us choose P, = Ann (M/E ) where M/E

N—subgroup of B/

/

is a prime
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Again, E is a prime complete with non small extension and

/
/ has a non-small prime ideal extension H/E/ in E/E/ such

/
sO M/E

/ / /
that M'/E'g H/y' - Thus Pp = Ann (M/g’) = Ann ( H/R).

/
Also, H//E/ is a prime N-subgroup and S0 H/E./ is primary.

Hence # ( H/,E/) =P, .

ing an fsd-1 N-group and hence E,/E/ is also with

/is a non-small ideal of E/p/then by

Here E be

/
fsd-1 [by 2.4.,2]. Since H/g

/7
2.4.13. H;E’contains a non-zero supplement E/E/in E/E/’ Thus

/
E/}E/ is also prime as H/E’ is prime.

p !
Therefore,ﬂ(E}E') = P, = Ann (E{/E') = Ann (H//E’) oo . (11)

Again from the exact sequence

/
(o) ~E = B =E/g = (0)

as above Wwe€ get

Vi
: o/
A E) e E) uA (/) . (111)
/
gince E//I ) is non—zero, we get E E,/. Thus the exact sequence
n B

/ 77 l/
(o) ~E-~E ~ B/g’ = (0

gives A (E/,) gﬂ(s’) uAE/E, by 2,3.12]

= jq (E”) c { Py sP2 }s [by (i) and (i1)]

Hence (111) sgives
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A (B) c { Pq» P2} U A (B

In this way, if we consider another distinct element

j Py e A (E) then we
/ p y
Py} UM (8/g") end B Ect .

/
get a supplement.E” in E such that

«.9(] (E) c {P’l’ ng

is an infinite set we get a strictly ascending

Thus, if A(E)
/ I /I/
ments E c B Ec .. 8N

nce A (E) must be finite. /

infinite chain of supple d this contradicts

the proposition 2.4.,21 . He

[15]] s An s-D decomposition of (0) of

o.5.8. Definition [

an fsd-1 N-group E is &0 expression Eq N Ep N ...

where each By (1 = 1,2,..09 t) 18 @ supplement in E such that
N

e exclusion of the set underneath it) and

indicates th

(i1) each factor N-group E/Ei is primary withfl(a/Ei) fyg(E/Ei)

for i # J, where 1< 4,3 < t.

5.5.9, Theored [[15]] ¢ Let E be an fsd-1 N-group with acc
on anninilators ther the following results hold good =

There exists an s-p decomposition of (0) in E.

(1)

g = (0) is -
(II) If Eq n Bz (0) an s-p decomposition of

n ...nEt

A(E[E) v A (E/F?») U ... U R(E[E),

(0) in E then H(E) =
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We have by 2.5.7, dQ(E) is a finite set and -

proof & (I)
, Py} (i)

let Q (E) = {Py» Posee-

Therefore, J(B) = { Pq» P2y «ves P U {P} (L1t

s by the theorem 2.5,6 we get a supplement By in B suc!

F
that JQ(E;i) = {P’l' Poy eoos Pir oo Pt} ande(E‘EQ: {Pi} .

e for all values of 1 and emleJEi is primary 85§JUEIE}

Thu

is tru

={P;}
are distinct,JQ (E/E7’> 4 JQ (EJE-))Jfor i# 9,

S
Again, as Py

Lgd, d5 B

Now, let ann(H) € fH (Eq N Ezﬂ v s 30 Et) for some prime

N-Subgroup H of Eq N By N ... NEg. Then il is a prime N-subgr<

of each of B4 (i-= A,2,0009 £)e

g0, Ann(H) € fl (E;) for all b

_s Ann(H) sﬁ(ﬁlq_) NAE,) N eee n{ (E¢)

- PEy N By N oeee N Eg) c ME]) NA (E) N .. nQ (E) =0

> AEg N By N oeee 0 k) = P

= by 2.3
o EzlﬂEZ” voo N By (0), [by ,\3 10]
If possible, let Eq NEz N eoe n ey N eos NEL = (0) fo

i (1 ¢ i€ t). We consider the mapping
some b
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N
5 coe h that
a« t E ~ E/Ei ® ... B E/Ei P ® E/Et suc a

N i ‘
a(e) = (e-{-Ei'..., e+Ei,..., e+ht) for e e k.

Clearly a is an N-homomorphism.

a(e’) for e, e‘’e E then

/S y

/
t) = ( e "‘El’ooo,e/"‘ Ei’oon,e + Et)

Now, if a(e) =

A B
(e"'Ed-,o-o,e"'Ei’ooo’e‘*'

/ .
= e+Ej=e + By for j # 1

N e_e’ep_;j, for all j # i.
A

= e--e/e E,lnEzﬂ...ﬂEin ...nEt=(O), by supposition

/
= e=¢@
Hence a is an N-monomorphism and thus E is embedded in
. n (0) £ h L (4<1<t). SoE is
B, = or eac £if .
@ E/E,j when nj_ 3
j£L
J# .
- oup of E vhen N E. = (0). Thus
considered as an N-Subgroup ® /1':::j 31 9
I#
t
f E is also a prime N-subgroup of @ E/E
a prime N-subgrowp © A 3
< t).
for each i('lf.i—t)
t
E/g )
rherefore, N (E ) EJQ( j?i By

t
= U 3 (8/p ) for each 1, [by 2.3.14]
JAL J
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/N
= 4 () ¢ ﬂ(s/El) U A (E/g) U UAE/E) Y - U €/g,)
e
- {pg}ufp}y...V Py} ueev u {Py)

A
# ﬁ (E) E {Pa,PZ’oo.,pi
N eee n/\EinooonEt#(o). /

posce ,Pt} which COntI‘adiCtS the r'esult

(1). Therefore, Ep 0 E,

t
(II) Let ni Ej = (0) be an s-p decomposition of (0) in E.
j::

is a supplement in E. Here E; N Es N...N Ej Neoo

Thus each Ej
n Eg # (0) fo

g/. ) for each 3 A i
A (5/Ey) # A /g, t

Let us consider the mapping « : E - & E/Ej such that
5

r each j end eech fatctor N-growp E/Ej is primary with

a(e) = (e+Bpreccr e + Et) for e € E.

Tt can be easily verified that o is an N-monomorphism. Thus

t
E is embedded in ® E/g .50,k is regarded as an N-subgroup

3=1
t
of @ E/g Thus a prime N-subgroup of E is also a prime
PR
t
N-subgroup °f J®{|_ E/Ej’ Hence by 2.3.14, we get

t

t
= .o i
A @ g A jéz E/g ) Y A ) (1)
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N\
> Q@ cfdEE) v (8/g) U wor UAGE/G) U o uf €/,
/N
= { Pq} U {p;} v ... U Pyl u..on P}

A
= A () ¢ {PyPoseresPirere Pt

A
N E, N oo NEy N oo NEg £ (O /

} which contradicts the result

(1). Therefore, Ep

t

(I1I) Let jni By = (0) be an s-p decomposition of (0) in E.

Thus each Ej is a supplement in E. Here E/l N Eo Neoeol Ej Neoo

nE, A (0) fo

A (E/Ey) # A (E/Ej) for each J £ i. t

consider the mapping a [ E - ( E/g suh that

Let us ]
jA

r each j and each factor N-group E/Ej is primary with

a(e) = (e+E’l'°"' e ¥ Et) for e € E.

easily verified that a is an N-monomorphism. Thus

It can be
t
E is embedded in ® E/g 595 is regarded as an N-subgroup
j=1
t
Thus a prime N-subgroup of E is also a prime
of @ E/Ej i
J=1

t
. Hence by 2.3.14, we get
N-subgroup ©f J®’l E/E__i

t

t
= oo i
A ®) A ﬁl /) = 5 H Es) (1)



89

t
n

Now, consider a mapping g 2 E. - E/E for each
i

i#i

i = .
(1< i< t) such that B(e) =e + E4, e € Ey for all J £ i

Clearly, B is an N-homomorphism,
t

If B(e) = 3(9,) for e,e/ e N E.. Then
ALY
e + Ei = e/+ Ei
=> e - e/e Ey
;L , t
But e — e € N Ej.Thus e-ee N E;, = (0) .
JAL g1
Therefore, e = € .
t
Hence p is an N-monomorphism,. Thus n &k is embedded in
Y
: N b
B . So N E; is an N-SUDErowp of E/., . Thus a prime

t

n E

is also -
N-subgroup of 141 j a prime N-subgroup of E/Ei .

t
Hence A ( ;j;'i EJ) c A ( E/Ei) coe (i1)

t t
Now, 1, By A (0 = £ 0 ) A9

t
( B/, ) is singleton, (ii) gives j}( n E,)=RH(E.)
Since & Ej VA p ﬂ /Ei
t t t
X " = U '] E. ¢ o o
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t
n E. - E/, for each
i

Y

Now, consider a mapping B 2

1 (1< 1< t) such that B(e) = e + By, e e By for all J £ 1.

Clearly, B is an N-homomorphism.,
/ / t
1f g(e) = B(e ) for e, € N Es. Then
J#1
/
e +E; = @ + By
=> e - e/e Ei
;T ¢t
But e —e € 0 Ej « Thus e -e € N Ej = (0) .
AL =1
/
Therefore, € = € -
t
Hence p is an N-monomorphism. Thus N E, is embedded in
A
v N-sub
B . So n E. is an N-subgroup of E/.. . Thus a prime
'k, IR !

- n E, 1s also a prime N-sub
N-subgroup of i J P group of E/Ei .

t
Hence A ( ;}Qi Ej) c A ( E/Ei) oo (11)

t t
E, £ (0) = :
Now, 321 J # jQ( 321 EJ) # 9
t
« singleton, (ii) gilves =
since H( E/Ej) is singleton, (ii) give A ( jQi Ej ) ﬂ(E/Ei)'
& t t
/. )y = U n B, oo
RIS (111)

Therefores iA



N

t t
Since Ei are supplements in E, JQl EJ c E and JIQ (J;éi 3 )
c SQ (E) for each 1i.
Thus Y A ( ; £y € A (E)
S ] J#i
N u A e/g) e AE, oy (D) cee (W)

i=

Hence (i) and (iv) give
¥ NE/g) - 7
= U .
A E) = Y N e

2.5.10, Theorem [(15]] : Let E be an fsd-1 N-group with

scc on annihilators such that Z,(E) = (0). If a commutative ring

N (with unity) has no infinite direct sum of left ideals and

every essential left ideal of N is essential N-subgroup of \N

+
there exists a t € Z° such that
then for any Pe‘ﬁ(E)

xt e Ann (E) .

- p = Ann (M) (=say), where
. et X € n P then x ¢
PI‘OOf . L PE'ﬂ(E)

M is a prime N-subg

» - E be a mapping such that
Let §; ¢ E = E

?
N

) L = 1.2.3...
(bi(e) = Xie, fore € B (i 1,2,3,

ti ring h x ¢ N is distributive
. ommutative ring, 80 eac
N being & c
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= r-E(Ann(r‘E(Xt))) = V‘E,(Ann(f‘g(xt*i)))

= rE(xt) = 1~E(x’°*"1), [by 1.3.1¢] ... (1ii)

Now, @ e € Ker qlth? ¢t+’l (e) =0

N xt-«-’le -0

o e eGP =g, [oy (4]

= xte=0

=> eeKel"¢t'

= Ker qﬁt+1 c Ker ¢t . Also, (i1) gives Ker ‘f7t c Ker pt-&-’l

Hence Ker ¢t = Ker ¢t+’l s - (‘_’w)

t,. .
We note that x & 18 an N-subgroup of E. For, if ep,e; € E

t t.. t
xtei, X €o e x b which gives X ei - xtez € xtp_; [by (1)].

n (xtE) = (ox7) B = (x'n) & = x (mE) g XL as N is commutative.
t. t,
Consider 8 map £ ¢ X b~ X0 such that f(xte) - xt"')le,

for e € Eo

Thus, for €» eq € E, we have

c(xb(ete,)),  [by (1)]

t
f(xte + X 91)
E+1(e + ), (by definition)

t
St + xttley,  [oy ()]

_ r(xbe) + £(x"ey)
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t
Also, for n e N, f(n(x'e))

— £((n x")e)

£((xPn)e), as N is commutative

- £(xV(ne))

xt+1(ne), by definition

= n (xt*ie) as N 1s commutative

n f(xte).

|

Hence f is an N-homomorphism.

t t
Again, 1f f(x7e) = f(x eq) then

xt)/l (e —eq) = O (by (1)]

=

= e- e & Ker(ﬁtﬂ = Ker ﬁt
=> xt (e- e,l) =0

> xe = xte,l, [by (1)]
Therefore f 1is injective.
Also, W€ have, xtE c E and so

JQ (xtk:‘.) c QQ(B) .

ty = (0) then xt ¢ Ann (E), we are done.
If X8 7
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t, t, :

Suppose x & # (0) then N (x B) # (f) . Then there exists a
¥4 t,, / t,

subgroup £ of x5 such that Amn(E ) e(jq (x"B).

non-zero prime N-
ach P ¢ d (E), we get x e P for each P ¢ A (xti:‘.).

Since x ¢ P, for e

/
/ . . /
So x £ Ann (& ) which gilves xBE = (0). That is f(E ) = (0). Again,

/
f is injective, it follows that E = (0), a contradiction. Hence

t a
xtE= (0) and soO X e Anrn (B) . /



CHAPTER _ IIL

with acc on left annihilators

Near—-rings
-'-_

We have proved some results on (right) near-rings satisfy-

ascending chain condition (acc) on left annihilators. In

ing the
e confine our discussion on left Goldie near-rings

particular, w

which is defined as @
d having no infinite dire
oof of theorem (7) of A.Oswald [41) using non -

-ring. This result, published in National

(right) near-ring with acc on left annihila-

tors an ct sum of left ideals, Here we

give another pT
near

gulal"ity of such a
[[13]], plays a key role in very many

pter. We have shown the existence (or coinci-

sin

Academy Sci
results of this cha

(right) near-rin
g with some interesting characters ([[37]], IoPaM).

dence) of g of left quotients of a strictly left

Goldie near-rin

Tpe first one of the five sections of this chapter contains
preliminary results required for what follows. The second contains
sults on stronply semiprime near-rings., An important

ic re

some baS
N is a strongly semiprime

section reads as If

reSUlt of the
cuch that an essential left ideal

y left coldie nea
ntial left N-subgroup
properties of maximal annihilators of

r-ring

strictl
of it then N satisfies the

of N is an esse
ft annihilators.

dcc on le
ng N with acc on left

i annihilators
such a near-ri rs find their places

in the third section.

(95)
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In the fourth section, we show that the collection ' of al
of all

maximal left annihilators in a strongly semiprime strictly left

Goldie near-ring is a finite one in some special cases and i
S s such

that N P = (0). It is also seen that such a near-ring N is

Pe
embedded in @ N/p , a direct sum of strongly prime strictly

Pi e i
left Goldie near-rings.

prime strictly left Goldie near-ring N. In such a d.g.nr. N with
o5 e . W

distributively
ring Q(N) of left quotients of N is a classical near-ring Q of
3 - 0

generated left annihilators, the complete near-

left quotients with respect to (w.r.t.) a set S of distributi
utive

non-zero-divisors. Moreover, @ has no nilpotent left Q-subgro
- roups

and it satisfies the dcc on
ctly left Goldie near-ring so also N and it has no

its left Q-subgroups. Conversely, if

Q is a stri

non-zero nilpotent left N"SUbgroupsu*WM Q satisfies the dcc on its

left Q-S ubgroups.

3.1. Egerequisites

Let x be any element of a near-ring N

éLl.l. Lemma ¢

t+1 t ' )
such that 1(x°77) N Nx # (0) for all t e 7% then

1(x) c 1(x2) c l(Xj) C ese C 1(xt) C veee

is a strictly ascending chain.
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Proof ¢ Suppose there exists a t ¢ 7t such that

1(xb) = 15 e (1)

t
Then by 1.3.22, we have 1(x- ™) = l(xt) for allme 2% .

t
Let forn € N, a =nx  (£0) € 15y 0ot L

Then « € l(Xt) [by (1)]

= axt.-.-o

= nx2t =0

o ne 1(x*%) = 1(x) [by 1.3.22]

t
= q =nx = 0, acontradiction.

t t+l
Therefore, 1(x’) c 1 (x°*), for e11t e 27, /

2.1.2;__&229 + In what follows, because of 1.2.14 we shall

 Jeft N-subgroup A of N™ instead of writing N-subgroup A

write
of NN.

¢ A non-zero left N-subgroup A of a

2.1.3. Definitions

g N is called an essential left N-subgroup of a left N-

near-rin
subgroup B of N (denoted A c ¢ B) if for every non-zero left N-

< B) of N, A NC#(0).

subgroup of
If Ace B then we 5ay, B is an essential extension of A.
For the sake of completeness, we restate the lemmas 2.2.3 and

2.2.4, as followS.



A

A

N

N-subgroup L <

N.

X

H

o8

3.1.4, Lemma t Lf A,B,C are left N-subgroups of N with

———

geBSeCthenAg_eC.

3,l.5. Lemma 3 if A,B,C are left N-subgroups of N with

BgeC.

cBcC, AgeC'thenA_c_:e
3.1.6. Lemma[[l3j ¢ If A and B are two left N-subgroups of

with B ¢ A, then for any a ( #0) £ A, there exists a left

. N such that La ¢ B, La # (0).

[[37] ¢ Let I and J be two left N-subgroups of

3.,1.7. Lemma
{(n enN | nx e 1 }]geNforeaCh

Jthen ( I3 %) [ =

If I e
€ Je.

proof : By 1.2.22, (I § x) is a left N-subgroup of N. Let
be a non-zero left N-subgroup of N,

Now, lx = (0) = hx =0 ¢ I, for each h (#0) €H.

= heHNn (I; x)

— HN (L3 x)# ).

Now, since Hx c J» Ice J and

if Hx # (0) then HX nigf o).

Let hlx(iéo) ngorhieH.

Then hy € (I3 %

= higﬂn(lsx)



If hi = 0 then hix = 0, a contradiction.

So, h, £ 0 giving thereby H N (I 3 x) # (0).
Therefore ( I 3 X) ¢ ¢ No  /

If J = N then as a corollary to the above, we get

3.,1.8, Corollary U:ll#j; Let I be a left N-subgroup of N

with IgeNthenforanyxeN,(I;x)EeN, /

3.1.9.(a) Lemma @ Let @, be an ideal of an N-group E and

£ ol - E/E is the natural N-epimorphism., If X is an essential
-1
N-subgroup of E/E1 then £ ~(X) is an essential N-subgroup of E.

proof 3 Let M be an N-subgroup of £ such that

£ nm o= (0) .
-1
Then, Ker £ NM g T (X) nm = (0) .
= Ker £NM= (0)

= f,M is injective

= f(M) =M.

Now, if x € X n f(M) then x = f(m) € X for some m € M,

S0, m e £ 200 N M= (0)

= X = f(m) =0

(0)

]

X0 £0)
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==

= f(M) = (0) (for X.C_e E/E'l)

(0)

—~ M= f(M)
- ) g B 7

If P is an jdeal of N then taking & = N, the following result

foliows as a corollary to the above.

{ Let P be an ideal of N and f ¢+ N - N/p

3.1.9(Db) Gorollary

]_ epj_morphism .
’1(A) is an essential left N-subgroup of N,

is the natura If A is an essential lcft N-subgroup

of N ( = N/p) then f

By note 3.1.5., 1t therefore follows that

3,1.9(c) Note 3 If P is an ideal of N and A/p is an essen-—
tial left N (= Np) subgroup of N, then A is an essential left

N-subgroup of N.

Zl(N) (={xeN | Ax = (0), for some essen-

3.1010' _lig—“-l—n'!"a" s

A of N }) is an invariant subset of N,

tial left N-subgroup
£ Let X E Zl(N) . Then Ax = (0), for some essential
proof &
by 3.1.6, for any n ( #0) € N there

A Of No SO’

left N-subgroup
ft N-subgroup L of N such th

. t L
n esfentlal le at Ln c A,

exists a

Ln £ (0) -
This givess L (nx ) = (Ln) x ¢ AX =.(0) .

= nx € Zl(N).
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And, A(xu) = (ix) n = (0)
= Xnh € Zl(N)

Hence Zl(N) is an invariant subset of N, /

3.,1.11L. Definitions ¢ A near-ring N is called left non-

(0). A near-ring N is called left singular if

singular if Zl(N) =
Z]_(N) = N .

3.1.12, Lemma 3 An element x e Zy(N) if and only if
-——-“

proof ¢ Similar to that of 2.2.5.
3.1.15. .Egmaqliljﬂ t If 1 is a left N-subgroup of a left

non-singular neer-ring N such that 1(B) ¢ , I then 1(B) = I.

roof ¢ gimilar to that of 2.2.6,

et asar -y

If N satisfies the acc on left annihilators

3.1.1h, Lemna ¢

) is a nil invariant subset of N,

then Zl(N

proof ? Let x € Zl(N), then by 3.1.12, 1(x) ¢ . N

— S—

ot _
Now, 1(xX) € l(Xt) c L(x +i). for all t e 2%,
14 -—

; t
we have by 3.1.3, 1(x +i) c . N.

As 1(x) S e N,
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t+1 t . t
So, 1(x Ty noNx” £ (0), if x # 0 (since 4 e N and Nxt is a
non-zero left N-subgroup of N).

= 1 (x)c l(xz) C eee C© 1(Xt) c l(xt+1) c ... (by 3.1.1.)

and thus we meet a contradiction.

t +
Therefore, X = O for some t € Z, in otherwords x is nilpotent,

Hence by 3.1.10, Z)(N) is a nil invarient subset of N. /

3,1.15. ggjinition t A left N-subgraup A of N is said to be

a weakly essential left N-subgroup of N if for any left ideal

1( # 0) of N, AN I# (0.

It is to be noted that an essential left N-subgroup of N is

4 weakly essential left N-subgroup of it. However, the following

example shows that the converse of it is not true.

3.1.16. Example (H(37), Page 341-342 [42]) : Consider the

near-ring s5 = { 0,a,b,c,X,y} with operation addition [defined in

table 1.3(1)] and multiplication defined by the following table .

. 0 a b c X y
-5 0 U 0 0 0 0
a §) a b C 0 0
b 0 o b C 0 0
c 0 a b c 0 0
e 0 0 0 0] 0 0
0 0 V]

y 0 0 0

Table ¢ 3.1
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Here non-zero left Sj—subgroups are {0,a}, {0,b}, {0,c},
{O,X,y} and 83. {O,x,y} and S3 are the only non-zero left ideals.

This shows that the S3—subgroup {0,x,y} is weakly essential but

not an essential left Sj-subgroup.

3.2, Strongly semiprime near-rings

Here, in the beginning, it is worth mentioning that the idea

of a strictly prime ideal as defined in the preceding chapter is

basically different from what we want to introduce here some other

types of algebraic substructures in particular a strongly prime

ideal, strongly semi-prime near-ring etc.
3,2,1. Definitions ¢ An ideal I of N is called a strongly

prime ideal if, for two non-zero invariant subsets A and B, ABc I

implies either A ¢ I orBgcl.

is strongly prime if (0) is a strongly prime

A near-ring N

ideal of N.

3.,2,2. Definitions ¢ An ideal I of N is a prime ideal of N

non-zero ideals A and B, AB c I implies either A ¢ I

if for any two

or B« I. A near- ring N is prime if (O) is a prime ideal of N,

It is to be noted that every strongly prime ideal is prime

and every strongly prime near-ring 1is also prime,

pefinitions ¢ A near-ring N is called a strongly

3.243
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semiprime near-ring if N has no non-zero nilpotent invariant

subset of N.

Hence a strongzly semiprime near-ring has no non-zero nilpotent

invariant subnear-ring also.

Near-ring N is said to be semiprime if N has no non-zero

nilpotent ideals of N.

We note that a strongly semiprime near-ring is also semiprime.

A partial converse of it is seen in A. Oswald [41]. But, in

general, the converse is not true. It becomes clear from the follow-

ing.
3,2.4, Example (J(8L4), Page 342-343 [42])
N = {0,1,2,3,4,5,6,7} is a near-ring under addition modulo 8
and multiplication defined by the following table.
. 0 1 2 3 b 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 1 1 1
p 0 2 0 2 2 2 2 2
3 0 3 0 3 3 3 3 3
A 0 4 0 4 4 4 4 A
5 0 5 0 5 5 5 5 5
6 0 6 0 6 6 6 6 6
7 0 7 0 7 7 7 7 7

Table ¢ 3.2
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Here N has no non-zero ideal except N itself. Table shows

that N is not nilpotent., Thus N is a semiprime near-ring. On the

otherhand, N has a non-zero invariant subset {0,2} which is

nilpotent. Thus N 1is not a strongly semiprime near-ring.

, a semiprime near-ring need not be strongly semi-

Therefore

prime. /
3,745 Lemmal!léj : A strongly semiprime near-ring N has no

sero nilpotent left (right) N-subset of N,

non-

If A is a non-zero nilpotent left N~-subset of N

Proof ¢
At = (0) with Att 4 (o).

+
then, for some t € Z,

yrite B = AU then

- t
B2 catta=4a" = (0)

2
=>B =0

Moreover, (BN) N = B(N N) ¢ BN and N(BN) = (NB)N c BN

(for B is a 1eft N-subset of N).

Also, (BN)2 - (BN)(BN) = B(NB)N ¢ BBN = B°N = (0)

g strongly semiprime, it follows that BN = (0) which

N bein
e N), a contradiction,

gives B = (0) (es 1

N has no non-zero ni
1ds good for right N-subset of N also. //

Therefore lpotent left N-subset. In like

manner, the result ho
If I is an invariant subset of a strongly

3,2.6. Lemia ®
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semiprime near-ring N then 1(1) = r(I)

Proof & We have, 1(I) I = (0)

(I 1(1)) ( I 1(1))

So, (I 1(1))2

]

I(1(I)I) 1(I)

=(O)!

= T 1{I) = (0), (by 3.2.5 as I 1(I) is a left N-subset).

o HE) o

Similarly, r(I)I = (0) gives r(I) ¢ 1 LY
y = (1) - /7

Hence r(I

trongly semiprime near-ring N with acc
3.2.7. L@EEE[E14] i SUTEREST ERNEE &
zero nil left N-subset of N,

on-
on left annihilators has no n

proof ¢ Let A be any non-
on left annj_hilators, we can choose a ( ;é Q) o
C =

Satisfies the act

with 1(a) as larse

Now, a Na = (0)
D (na) (Na) = N(aNa) = (0)
peing @ non-zero left N-subset of N(1 e N, a # 0), we
- 3,260

ot to
Meet g contradlctlon

So, aNa # (0) -
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Let x € N be such that axa £ 0

Now, xa # O (otherwise axa = 0)

= x £ 1(a)

Again, z € 1(a) = 28 =0

- z (axa) = (za)¥a=0
= 2z ¢ 1(axa)

= 1(a) ¢ 1(axa)

But 1(a) being maximal, l(axa) = 1(a)

so, x £ 1(axa)
= x(axd # 0
= (Xa)2 #0
— (xax) a # 0

xax £ 1(8) = 1(axa)

=
= (XaX) (axa) f‘ 0
= (xa)3 # 0 and SO On.

+
# 0, for any t € Z°

1
Thus, (xa)
zero non nilpotent element Xxa,

Therefore, A possesses 8 non-

So A is not nile

N does not have any non-zero nil left N-subset of N. /
e

Henc
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3.7.8. Lemmal[l},lhj { If N is a strongly semiprime near-
ring with acc on left annihilators then N is left non-singular,

proof ¢ By 3.1.1%4, Zl(N) is a nil invariant subset of N and

by 3.2.7, it follows that Z,(N) = (0). Thus the result follows. /

Extending the idea of finite Goldie dimensidn (fgd) in near-

ring given by Satyanarayana in [44], we define a near-ring to be of

strictly finite Goldie dimension (strictly fgd) if N has no

infinite independent family of left N-subgroups of N, Clearly a

near-ring with gtrictly finite Goldie dimension is with finite

Goldie dimension.

3.2.9. Lemna E14,37] t Let N be of strictly finite Goldie

dimension. Then for x € N, Nx ¢ , N if 1(x) = (0) .

{ Let A be a non-zero left N-subgroup of N such that

Proof
AN Nx = (0) when 1(x) = (0) for x ¢ N.

1,2,3,...) is a left N-subgroup of N.
aS

xt N (A+AX + oo0 + .A.xt + oo + Axs) where

i
Now, each Ax (1

Let a € A
0<t«<s, 8E 7zt and Ax means exclusion of the term Axt of the sum,

t 2 .
Then o = 8% = a + agX + e + agX +eo.ta X s for
3,31’32.-..,88 € A.
t S 2
= a = agX - agX T eee T X = a4X

t-1 s=-1_ - 85X - al)x e AN Nx = (0),
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t-1_ 45"l . .- 8y = 0 [as 1(x) = (0)]

t-2 xs—2_
.- a))x € A N Nx = (0)

*

t-2 s=2
X - see — & = 0
2

Thus, continuation of the process will give us

0. SO’ a = 0.

At

t
Axt n (A + AX + o000 + Ax + ocee *+ Axs) = (O) N

= = a =

a = al = 32 = e

Hence
This is true for all St € z* with 0 < t < s.

s
Therefore, {Ay AXy ovo» AX"} is en independent family for

In other words, {A,AX,...
ups and this contredicts the strictly

each s € 2" } is an infinite indepdndent
femily of left N-subgro

finite Goldie dimension character of N,

Hence, A N Nx / (0) proving thereby Nx ¢ o N. /

3,2.10. Qgiiﬁlﬁiﬂﬁ s An element x e W is sald to be a non-
= (O) = r(X).

zero-divisor if 1(x)

Let N be 1eft non-singular with acc on left

3,2.,11. Lemma &

and X € N is such that the left N-subgroup Nx ¢ N.

annihilators

Then x 1s @ non—zero—divisor.

r00f & Let Y € N and A,B be two left N-subgroups of N such

———

that A E'e Bo

0

we first prove that Ay < o By.
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For this, let C ( # 0) be a left N-subgroup of By. Then

ch S = s o
oose c( € C) by ( # 0), for some b, € B. Now as A ¢ g B,

we get a left N-subgroup L ¢ ¢ N, by 3.1.6, such that

LblgA,Lbiié(O) .

So, L byy & Ay. And as N is left non-singular, we get

L (byy) # (0) (otherwise by = 0, not true).

Again, L byy N biy cNC cC gives L bly c Ay N C. As

L byy £ (0), it therefore follows that Ay N C A (0). Hence Ay ¢ o By.

We now write, A = Nx and B = N, Using the above fact and

Nx « _ N, we get

2
NX € ¢ NX € ¢ N.

2
By 3.l.4, ve thus get, Nx" ¢ . N.

t
Similarly, we have Nx ¢ o N, for each t ¢ 2+

ing with acc on left annihilators, the descending

Now, N be
chain
2 3 . +
1(x) ¢ L(x ) ¢ L(x") € ... gives at e Z
t t+l
such that 1(x) = L(X ).

Now, if L(X) # (0), then

t
g g = e h 1(x) # (0)

t t
choose z ( # 0) € Nx n 1(x). Then z = nx , for n ¢ N and
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. t
= pNx 0N 1(x} = (0), a contradiction.

Hence 1(x) = (0)

Next, suppose a E r(x).

Then, xa = 0

Cl d i
I\I an N 15 le Et non k-in‘,-)u.lr; )

o a2z = (0) (8 TS

Hence X 15 @ non—zero—divisor. /

5.2.12. Definitions § pesr=ring N i85 called leiy boldle
girect sum of left ideals (N is

near-ring if
atisfies the acc on left

of finite Goldie

and N S

annihilatoree.

family o
rSe

annihilato
a strictly left Goldie near=-ring is

the acc on 1eft
It is easy to see that

left Ggoldie.
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Since a laft Goldie near-ring satisfies the acc on left
it follows that there is a t e zt for

annihilators, by 3.1l.1l,
which 1(x°*%) n Nxt = (0).

Thus, we get

3.,2.135 Remarg< 3 If N is left Goldie, then for any x ¢ N,

t t
such that 1(x +1) n nx = (0).

we get at € 2

jon ¢ If N 1is 2 strongly semiprime strictly

3.2,14. proposit
nx (eNisa non-zero-divisor if and

left Goldie near-ring, the

only if Nx ¢ ¢ N

As N 18 strongly cemiprime and is with acc on left

by 3 2.8. N js left pnon-singular.

Proof

annihilators,
is strictly left Goldie, x 1is a

by 5'2.9’ as N

And therefores
No

- im ie X C
O—-2ero diViSOr .'L!.pll.,S N e
p— ' o]-]. w
C v ael aqc:ume NX © e N. Then b o C (2] get x is
onvers y s y 3

zero-divisore. /
n we consider the near-ring N is an N-group

with Zl(N), and if N is strongly semiptme

We note that Whe
oincides
strictly left Goldie, it

yN, then Zl(E) ¢
gain N being

2.8, A
then 2,0 = (9 by 2
5o it hes no infinite direct sum of left ldeals.
is s dieo '
s left Gol cpecial 685e of 2.2.8, we get the following (as
o 8pec!

re
And theref© gci. Letterso)

, Nat. Acad-
appeared lﬂ[lljj’
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3.2.15. Prgposition‘Il}] t Let N be a strongly semiprime

strictly left Goldie near-ring such that essential left ideal is

an essentlal left N-subgroup of N. Then N satisfies the dcc on

left annihilators. /

It is to be noted that an escential left N-subproup of N is

also weakly essentlal. The converse 1s not true as shown in

example 3.1l.16. However, the following example is sufficient to

show the existence of near-rings where every weakly essential left

N-subgroup is also essential.

3.,2,16, Lxanple (J(91), Page 343 [42]):

N = {0,1,2,3,&,5,6,7} is a near-ring under addition modulo 8

and multiplication defined by the following table,

. 0 1 e 3 4 5 5 7
~:;—~ 0 9 0 0 0 0 0 0
1 0 1 0 3 L 3 0 1
A 0 2 0 6 0 6 0 p
3 0 3 U 1 b 1 0 3
4 0 4 0 4 0 il 0 4
5 0 5 0 7 4 7 0 5
6 0 6 0 2 0 % 0 6
7 0 7 0 5 4 5 0 7

Table ¢ 3.3 .
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llere {0,4} and {O,Z,b,6} are the left N-subgroups of N whereas
the second one is the only non-zero proper laft ideal of N, Thus
each of them is weakly essential and the; are esrentials too. /

This, in turn, satisfies the hypothesis in 3.2,15. So ve

re-state the above rezult in

3,2,17. 1Theorem 3 If in a strongly seniprime strictly 1efﬁ
Goldie near-ring N, every weakly essential left N-subgroup of N is

alro esrential, then N satisfies the dcc on left annihilators, /

Maximal left annihilators

3.30

o

3.3.1. Proposition : Let N be with acc on left annihilators

1(A) is a maximal left annihilator for some

and is such that P

(non-zero) jeft N-subset A of N. Then P is a strongly prime ideal

of N.

« P being a left annihilator of a left N-subset of N,

roof

by 1030609 it f01

J be two invariant subsets of N such that IJ ¢ P.

o

Lows that P is an ideal of N,

et I,
Then 1Jr(P) g._Pr(P) = (0)
- Lir(P) = (0)

= Icg 1(Jr(P))
Now Jr(P) = (0)

- Jg NrP)) = 1(r(L(A))) = L(A) =P .
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Again, suppose Jr(P) # (0).

Since r(P) is a left N-subset of N (by 1.3.9), it follows
that Jr(P) < r(P).

And so, L(Jr(P)) 2 1(r(P)) = P.

As Jr(P) # (0) and P is maximal with this character, it
= 1(Jr(P)) and hence I ¢ 1(Jr(P))=>I c P.

follows therefore that P

Thus we get, in any case, IJcP = I¢cP or JcP.

Hence P is a strongly prime ideal of N. /

3.3.,7. Pproposition [[37]] ¢ Let N be with acc on left

annihilators and Pi» Pj be two distinct maximal left annihilators
of the type 1(A) vhere A ( #£0) is a left N-subset of N. Then

r(P;) c P 5 1(Py) c Py (1 £3).

proof & Clearly Py r(P;) = (0) _c_pJ. .

Since Pi and P, are ideals of N, these are invagiant subsets

of N and r'(Pi) is also so.

Now P, being strongly prime, P,r(P;) cPj

PiCPj or r(Pi)-C-PJ'

=
But P, being maximal and Py # Pj, Pj e P,j is not possille.
J

So, r(Py) c Py Similarly 1(Pi) c Py /

osition[[37]])s Let N be with acc on left annihilators

30303' E—EOp
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and P, = 1(ng), Py= l(AJ.) are two distinct maximal left annihila-

tors where Aj, Aj are non-zero left N-subsets of N. Then A;0 Aj=(0).

proof & Here Ai n Aj c Ai’ Aj

= 1(a; N A3 2 1(A5)» L(A5)
= 1(a; N Aj) 2Py Py

N-subset of N) as Pi’ Pj are maximals with this character.

.Hence this is possible only when A; 0 Aj = (0). /

in case of an jideal P of N we get a natural epimorphism

Also we know that a left (right or invariant) N/p- subset of

N/p is of the form K/p where K is a left (right or invariant)

N-subset of N such that P ¢ K c N.

3.3.b. ggogosition « Let N be with acc on left annihilators

and P is 2 maximal jeft annihilator of a non-zero left N-subset

of N. Then N/p is a strongly prime near-ring.

proof ¢ Let H/P, K/p be two invariant subsets of N (= V/p)

such that (H/P)(K/P) =P

A150, (H/p)(K/p) - (HK)/p for (h + P)(k + P) = hk + P when
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h e H, k ¢ K.

Thus, (H/p) (K/P)= p = (HK)/p =P
- HK c P

= HgPorKgP (as P is strongly prime)
=91{/P=P0r K/P='-P

Hence N/p is strongly prime. /

3.3.5. _P_r_'9,9_9.§£°-i-9-’1\[,37j} ¢ If P is a maximal left annihilator
in a near-ring N with acc on left annihilators and J is a left

tor of a subset of N ( = N/P) then there is a left annihi-

annihila
lator J of a subset of N such that J = J/P .

proof 2 Let J = 1("[’/9), where‘]]/p'is a subset of N/P .

DefineJ={xeN|XTSP} (#@B for OedJ)

Thus JT ¢ P = J Tr(P) _C.PI‘(P) = (0)

 J ¢ UTr(P))

r(p) = oIr(P) = (0)

Now a € 1(T
= al ¢ 1(r(P)) =P
= o € (by definition of J)
= 1(Tr(P)) cJ
J = 1(Tr(P))

Hence
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1

But T = 1(T/p) = {x + P | (x#)(t+P) =P, x e N, T ¢ T}

{(x + P | xt e P}

= {x+ | xT c P}

{(x+0 } x € J}

=J/p -

- ihilator of a subset of N,
Thus J = J/P where J 18 a left ann /

3,3.6, Note 3 e write P = { P | P is a maximal left

¢ the type 1(a), vhere A 1s a non-zero left N-subset

annihilator O
of N }.

nat follows, We confine our discussion to the subfamily
In wna

reep)={ele-

subnear-ring of N }.

1(A), where A is a non-zero invariant

furnish an example of such a family E) along with its
Now, we ’

bfamily " in the foilowing .
su

3.3. . (

addition [defined in table 1.1(i)] end multiplica-
er

d
near-ring ut
defined by the following table.
tion
b

o =2 b o

0
0
b
b

(-}

c
0

a
b
c

o O O O
mp © o Clp

Table & 3.4
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{0}, {0,a} end {0,0}. Thus P ={{0,a}, {0,b}}.

On the otherhand, non-zero invariant subnear-rings
- are

{0,a}, {0,b} and N and their left annihilators are {0}, {0,a}
’ 184,

{o,b}. Thus, [ =i{0,a}, {0,b}}.

Therefore, [' ¢ @ 4

Left Goldie near-rings.

3eb,

3,4,1., Theorem 3 Let N be a strongly semi-prime strictly

left Goldie near-ring and I (¢ P ) is the collection of all

maximal left annihilators of the type 1(A) where A ( # 0)"
is an

invariant subnear-ring of N. Then

(a) [’ is a finite set and

() n P =(0).
P el
proof (a) t Let {P,} be a collection of distinct elements

of [' where Py = 1(A,) where A, ( # 0) is en invarient subnear-

I'ing Of No
Now Ak c r (Pk) oo (i)
t t
T ak Er(Pi) ﬂk;'.ir‘(Pk), ak El"(Pk), ﬂ.iiit.

Suppose

nd let By € T(Py), then
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{ it is clear th

family {A
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akﬂi € P(Pk) P(Pi) c Pi r (Pi)’ (by 3.3.2)

= (0)
= af; =0 (for k # i)
= (kfé:j_ak) Ej_ = 0
= kﬁi r(Pk))r(Pi) = 0 cee
Now (r(P;) N I r(Pk))2

ki

) P(Pk))(r(Pi) n kﬁi P(Pk))

( Kﬁi r(Pk)) P(Pi)

=

- (0), [by (11)]

2
Thus, (A N Kﬁi A) = (0, [by (1)]

And each Aj (J

at A; N L
17 ki

3,2.5, we get

A
AN L Ay

Therefore, 2 collection {P | Py

k} of left N-subgrou

= (0) for N is strongly semiprime,

(i1)

= 1,2,...,t) being an invariant subnear-ring,

A, is a rignt N-subset of N and thus by

kAL
e[" } gives us an independent

ps of N, Since, because of strictly



171

left Goldie character, such an independent family of left N-

be infinite, ]’ must be a finite collectiony/

t

{P,P,.-.,P}andX=ﬂP .
12 t k=2 K

-
subgroups of N can not

(b) Supposeé, r‘ =

If x ¢ X then X €& Py ( for all k)

1(P,), vhere gy € 1(P,) .

©
-~
™
™t

Also let I
k

t t
y axe £ L(P) P = (0) .
L S TR

Thus
' k=1
Now each of Py peing an ideal, is an invariant subnear-ring

Therefore 1(X) must be contained in some (say)

and so is also X.
if x # (0).
P. € fﬂ #

so 1 1) €10 E P

k=1

¢ e) g M) P = (O

o 1) ( o

t
(L(P ))2 = £ 1(p,) = (0) .
m -

Thus, 1(Pp) 1(Py) < HEy) k=1

= (l(Pm))2 = (0) -
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Since 1(P ) is a nilpotent left N-subset of N, it therefore

follows by 3.2.5. that 1(Py) = (0), for N is strongly semiprime

We write P = l(Am) where A is a non-zero invariant subnear-

ri i
ng of N. Pm being an invariant subset of N, by 3.2.6. we get

1(P,) = r(P) -

so, r(®,) = (9

= 1(r(2(ay))) = 1(0) = N.
= 1(a) =N
= N A, = (0)
= A, = (0) , not true
t
Hence X = (0). In otherwords, kgi P, = (0) ./

Theorem{lifﬂ + Let N be strongly semiprime strictly

B, e e
wnere P ¢ ' ) is a strongly prime

Then .N ( = N/P

1die near-ring.

left Goldie.
strictly left Go

By 3,3,h4, we have thot N is strongly prime.

proof 3

And if 3& cdo g e is an ascending chain of left annihilators
we get a family { JQ,JZ,...} of left annihilators

in _I\.i, by 5-5059
= T
in N such that Jj = 1(Tyr(P))y Iy = 1( "i/p) vhere

Ti/P = {ti +P | t; € Ti} is a subset of N/P .



Now, X €& Jp = l(Tar(P))

=

=

=>

xr,r(p) = (0)
xTy < 1(r(P)) =P
XTQ cP

xt,l + P =P, for ti £ Ti

e
=\
]
—
o
| —

XngP
x T, r(P) = (0)
X € l(Tzr(P)) = Jy

Jp €92

gimilarly, we get

(_:_ eee AN

ascending chain of left annihilators



124

Because of Goldie character of N, we get ams € 7% such

that JS = JS"G_ = e

Now, ¥ € Es«rf_l. B 1634’1)

= 7 Tgun = (0
= Y Ts-l»’.L = (0)

= ¥ Tsn P

= y TqrP) = (0)

= ye Ll 4 rP))=Jgy =Jg -
— v e UT;r(P))

— y T r(P) = (0)

y ‘I‘S £ l(r‘(P)) =P

@
> y 1= (0
= ye LT =Jg
Thus Jg €95 = Js = Jsn

-

gimilarly, Jgul ~ Jg42

Therefore, N satisfies the acc on left annihilators.

Now, let {Jq>» 32,..., Jt} be an independent family of non-

t N-subgroups of N where each Jj = Ji/P y Iy (2P) is a

zero lef
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left N-subgroup of N and P = L(A), A is an invariant subnear-ring

of N. Then A N Jy is a left N-subgroup of N. Thus we get a family

{Ii} (I; = AN Ji) of left N-subgroups of N,

We note that I # (0) 3 for I, = (0) gives

AJ; cANJg =1 = (0) (as A is en invariant subnear-ring

and Jy is a left N-subgroup of N).

thus, (307 = (IR (I3 = Iy (ATy) A = (0).

And therefore JiA = (0), for N is strongly semi-prime and

JiA is a left N-subset of N.

Therefore, Ji € 1(A) =P

= J; = (0) , a contradiction,

So, I; # (0).
Now, we prove thet {I;} is an independent family of non-zero

left N-subgroups of N.

rn(s L)=(@ang)n £ (ANJ)
Heres 55 7 idy 37 ks k

cAnJg. N ¥ J
= I kij k

) Jk' then a = a; = L o where oy € Ji

Let a € J. N .
I kA Vo kA
for each 1i.
Thus -a— = _(—i = Z Ek °
J kA



5 g.n % JogP
3 Kk

so, I n( x Ik)gAﬂPgr(Pf') NP (as A cr(P))
ki

2 _
Again, (r(P) 0 p)© ¢ Pr(P) = (0)
(0) , by 3.2.5 for r(P) N P is a right N-subset

= r(P) NP =

of N.

hus . N ZI)"_‘(O)-
Thus, Ij ( s K

s an independent family of left N- .
Hence {Ii} 15 8 ami.ly eft N-subgroups of N

So, if {31,32,...} is an infinite independent family of left
we get an infinite independent family {1;} of

N-subgroups of N,
ups of N and this contradicts the strictly Goldie

left N-subgro
nce N cannot have an infinite independent family

character of N. He

of 1eft.ﬁ—subgroups of N.

Thus, together with 3.3.4, e get N is a strictly left Goldie
>y >

strongly primeé near-ring. /

¢ If N is a strongly semiprime strictly

Theorem
and Pi e (1 = 1,2,...t) then N is embedded

3.’+03‘

left Goldie near-ring

in N/p, @ Npy, ® -0 ®Vp o
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Proof t Consider the mapping
t
f: N~ @& N/P such that
i=1 i

It is easy to see that for n,m € N, f(n+m) = £(n)+f(m) and

f(nm) = f(n) £(m). Thus f is a near-ring homomorphism.,

Now, Ker £ = {n el | n+py =P; for all i}

= {neN | nenpPy = (0)}

= (0)
fHence f 1is a monomorphiSm. And therefore N is embediled
t
in @& N/p i
. i
i=1

3, 4,4, pxanple (E(1L), Page 339-340 [azi),

» near-ring N = {O,a,b,c} where operation + (defined

consider th
is defined as follows.

able l.l(i» and

in the t
_—’U’——' 0 0 0 0
a 0 a b a
b 0 0 0 0
c 0 a b a

Table . 305
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Here the non-zero left N-subgroups of N are {0,a}, {O,b} and

N where {0,b} is its only non-zero proper left ideal. And a( # O)

in {0,a} is not a non-zero-divisor. Moreover {O,a} is not weakly

essential.

On the otherhand, Zl(N) = (0), in otherwords N is left non

singular and all the left annihilators (viz. {0,b}) are distri-

butively generated. Again, {0,b} is weakly essential yet b is

not a nonrzero—divisor.

In the following ‘theorem we see how semiprimeness —of

N together with distributively generated left annihilators play

key role for the existence of a non-zero-divisor in a weakly

essential left N-subgroup of N in some special cases.

3.4.5. Theorag‘i}7] ¢ If N is a strongly semiprime strictly

left Goldie near-ring with distributively generated left annihilators

and weakly essenti
s then every essential left N-

al left N-subgroups of N are essential left N-

subgroup subgroup of N has a non-

zero-divisor,

. Let I ( #0) be an essential left N-subgroup of N,

proof 3

g strongly semiprime and with acc on left annihilators, by

N bein

3,2.,7, I i8 not nil.

We now consider a, €1 with a; non nilpotent such that 1(31)

is as large as possible.
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If ;(ai) = (0), we stop. If not, then 1(31) NIg-(O) as

I c

e N . Now l(al) N I being a left N-subgroup of N, it is again

non nil.

As above, we choose aj € l(aa) N I with a, non nilpotent

such that l(az) is as large as possible.

Thus a, € l(ai) = 8,8, = 0

Now, all' 32 € I = 81+32 e 1. if l(a,l+ az) = (0), we stop.

If not then we get 1(ag + ay) N I £ (0). Also 1(ap+ ay) N Iis
non nil.

First we prove, 1l(ag + ay) = 1(gy) N 1(ay) .

For this, let x e 1 (2;) N 1(ay) then
where S; € Sp, 1(ay) =<5 >, 8, is a set of

distributive elements.

Thus each 8; € l(al). So s;ay =0 (for each 1)

= (Zz Si)(a1 + a5) L s;a

=(ZSi)82

X82

= xe¢e ey +a,)

=> l(a,l) n 1(82) c l(egq + 32) vee (1)
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Y a; € 1(a + a,) = €8>, a; € S a set
oo 1t 8 » a; €5, (

of distributive elements).

for each i

= aj € l(ai+ az),
= ai (ad_ + 82) =0

2 a= 0
=D ai aa. + ai 82 l—

2 _ a, = 0)
= a; 8 = 0, (as a3y

2 1 )
= ay € 1(ap) 2 ey
2

= aj ¢ 1(a;) [for 1(a;) being maximal, 1(ay)= 1(a1)]
= aia’l = 0 (for' each i)
and so, ajap =0 giving thereby
(Zai)aa=o and(zai)az=o
= y=Z5Lajét 1 (atl) n 1(82)
Thus, (i) and (i1) &ive 1(ap+ ap) = 1(ay) N 1(ay) .. (1i1)

Since 1(gg + 8) 0

il left

ilpotent such tha

Now

I=1(gy) N 1(ay) N I is a non-zero non

N-subgroup, we choose &z € 1(az) N 1(ay) N I with ag non

t 1(33) is as large as possible.

agt 82+ 83 e I. If 1(gp+ 8yt a3) = 0 we stop. And if not,
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we proceed as above and as a result we get
2 ay) N ... N 1(ay) 2 +.. (for each t, we have
1(aq) N 1(ay) N ... N 1(ay) = ey + a5 + «0u + at) as above).,
Since N satisfies the conditions of 3.2,17, we get t e 2z
such that
= 1(ag +a; + ... + &) N l(at+{|_)

But by our choice, a¢ 4 € l(ag+ ay+es.+ at) niI
Thus, 8¢, € 1(ag+ aot ooo + ap) = %4 E l(at+1)

2
= g =0
And this contradicts with our choice of Bt 41 (ndn nilpotent),

So, 8L = 0. Therefore, l(ai + astesot at) nI= (0)

giving thereby 1(81 + 8y * eeo + at) = (0) N).

(as Ige

Thus we get ¢q = &) *+ @ teoot By E I such that 1(c) = (0)

And by 3.2.9, it follows that Nc ¢ , N and 3,2,14 in turn,

gives that ¢ is a non-zero-divisor. //
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3.5, Near-rings of left quotients of a left

Goldie near-vring

3,5.1. Lemma : If N satisfies the dcc on its left N-

subgroups and non nilpotent elements of N are distributives, then

every non nil left N-subgroup I of N contains a non-zero idempotent.

proof 1 Let ¥ = { 7 I | J is anon nil left N-sugroup of N}.

Clearly Y§# p, a Ie ¥ . since N satisfies the dcc on

left N-subgroups, Y has a minimal element (say) H. Now H being

non nil, H2 is also non nil. But H¢ c H, hence H2 = H as H is
minimal.

Now, consider the family C = {L ¢ H | L is a non nil left

N-subgroup of N, HL £ (0)}.

Here it is easy to see that G £ 0 for H e C (as H = H £ (0)).

So G has a minimal element (say) L. Thus HL, # (0), Ly g H and

L1 is non nil.

Let u ( # 0) e Ly such that u is non nilpotent.

Then Hu # (0) and Hu ¢ Ly. Therefore we have a € H such that
at'i(au) = a '1u = ... = uforallte zt .

auzu.soiau—

Since u £ 0, at # 0 for all t € z% . Hence a is not nilpotent

by assumption, it 1s distributive.

and therefore,

Again 1y (u) is a left N-subgroup of N and also, lH(u) c H.
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Now, u € lH(u) = u2 = U, not true.
So, u ¢ L;(u). Hence 1;(u) c H. And the minimality of H in ¥

therefore gives that lﬁ(u) is nil,

~

Also, (az— a) u = au - au=au- au=0

2
= a =-act lH(u) (for a € H)
Thus, a2 - a is nilpotent.

Let (a2 - a)t = O for some t ¢ zt
As a is distributive, we therefore get from above

at = at*l g(a), where g(x) is a polynomial in x with coeffi-

cient +#1 or -1 . Again a being distributive, a® is also so. Therefore,

we get
o% g(a) = 6(a) &
Now, a® = b ga) = a2 (g(a))® = ...
_ o5 (g(a® = at(at(g(a))®) = ave
where e = at(g(a))t - (g(a))%a".

Therefore, e = e’ (g(2))" at(g(a))t
- a’e (g(a))"

= at(g(a))t

e

If e = O then at = ate = 0, a contradiction,
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Thus e is a non-zero idempotent.

Again,aeﬁglﬁg(a)el

t
and so a , (g(a))t e I

Hence e = at(g(a))t e I

Therefore I contains a non-zero idempotent. /

3.5,2., Lemma 3 Let N satisfy the dcc on its left N-subgroups

and non nilpotent elements are distributives, If N has no non-

zero nil left N-subgroup of N then every left N-subgroup I ( # 0)

of N contains a non-zero idempotent e such that I = Ne.

groof ¢t Since I is non nil, by 3.5.1, I contains an idempotent

e/(say).

4 %
Now the family {11(9 ) | € is an idempotent of I} of left

N-subgroups of N has a minimal element 1;(e), (say).

Again, lI(p) £ (0) = ll(e) contains an idempotent (say)

eq (by 3.5.1). Then eqe =0.

Each of e and e, being idempotent, is non nilpotent and

therefore distributive.

Write, e, = € * ey = €eq € I (as e, €4 € I)

Ihen e,e = (e + &g = eep) € = ¢
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=> eg = (e+e1-ee1)(e+e1 - eey)

e(ete, eei) + ei(e+e1 - eei) - ee, (e+91 - eei)

2
= e + e, — eey (as eze = 0, e) = ¢€,, @ = e)

es

So, e, is an idempotent such that e, € I,

Now, X € lI(eZ)

= Xe, = 0

= x(e2e) =0

= xe =0

= XE lI(e) .
Thus , lI(eZ) c lI(e)

Again, eqep = 0 = ey e 1;(ep)

=> ey € l:[(e-l-e,‘L - eql)

= e, (e +ey - eeq) = 0

~

e=0)

Q

I'4
= ep =0 (as eq = e,y €

Hence €;82 = 0 gives rise a contradiction,

Therefore, €p £ lI(eZ). But e e = O gives thet e, ¢ 1I(e).

Thus ll(ez) c lI(e), which contradicts the minimality of ll(e)’

we therefore get 17(e) = (0).
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Now, for y € I, (y - ye) e = ye — ye =0
= y-ye e ly(e) = (0)
= y =ye € Ne

= IglNe.

But Ne ¢ I (a8 e € I and I is a left N-subgroup of N).

Hence I = Ne. /

3,543 Definition 3 Let S be a multiplicative subsemigroup

satisfy (left) Ore condition w.r.t. S if

of N. Then N is said to
for each pair (s,n) € S x N there exists (Sl’ni) e S x N such

3,5.4, Definition ¢ A left N-subgroup D of N is said to be

dense if for all n € N, nD = (0) implies n = O.

Definitions ¢ Let N be a subnear-ring of a near-ring

30505’

Q. Q is aaid to be

qe @ N i’( ={xe@ | xq e N}) is

a near-ring of left quotients of N if for all

a dense left N-subgroup of Q.

A (richt) near-ring Q(N) of left yuotients of N is called a

comp lete near-ring of left quotie

nts of N if a monomorphism % N - Q(N)

a monomorphism : Q = Q(N) where Q is a near-

can be extended to

ring of jeft quotients of N.

A right near-ring G,y containing N as a subnear-ring is
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Now, for y € I, (y = ye) e = ye — ye =0

= y - ye e ly(e) = (0)
= y =ye € Ne

= Ic¢cNe.

But Ne c I (as e eI and I is a left N-subgroup of N).

Hence I = Ne. /

3.5435 2§£22i££22 s+ Let S be a multiplicative subsemigroup

Then N is said to satisfy (left) Ore condition w.r.t. S5 if
ists (Sl’ni) € S x N such

of N.

for each pair (s,n) e S xN there ex

that .0 = 1S

3.5.4, Definition i A left N-subgroup D of N is said to be

dense if for alln e N, nD = (0) implies n = O,

T

nginitions { Let N be a subnear-ring of a near-ring

3.5400

s said to be a nears

an.Ni1(={X€Q|quN})1s

ring of left quotients of N if for all

Q @i
a dense left N-subgroup of Q.

A (riaht) near-ring Q(N) of left quotients of N is called a

if a monomorphism t N - Q(N)

monomorphism ¢ Q@ = Q(N) where Q is a near-

can be extended to a

ring of jeft quotients of N.

containing N as a subnear-ring is

A right near-ring G,y
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called a classical near-ring of left quotients of N w.,r.t. a

semigroup S of distributive non-zero-divisors of N if and only if

(1) 1eC,,y

(ii) elements of S are invertible in C_, and

(iii) for each x € C_ 4 there exists s € S such that sx e W.

In what follows we shall write Q to denote
the classical near-ring C_; of left quotients

of N w.r.t, S.

2, Q= {s-ln | s €3, ne N }.

3.5.7. Lemma : Let Q be a classical near-ring of left quoti-

t. S ( a multiplicative semigroup of distributive

ents of N w.r.v.

non-zero-divisors of N) and N satisfies the (left) Ore condition

WeroteSe

If 51'52""’St e S then there exist N4sNoyeesyy € N and

-4 _ -1 .
S ESSUCh that Si = 8 ni (’1:’-'-’2,000’ t)o

-1 -
proof ¢ If 5 = Sa and N, = S, then s "n, = Sﬂ_l and thus

the result ig true for t = 1.

Assume that the result holds good for t - 1, Then for

Sqs Spr vt Sp.1 € S, we have my,Moyeee,fy g € N, u ¢ S such that

Szl = u.‘lmi, i = ’-1-,2"000, t—l Py
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Again by (left) Ore condition, for (u,s;) € S x N we have
(ng, m) € 5 X N such that ngs, =mu = s (say). Then s ¢ S and
m(= suwi) is invertible in Q.
Write n; =m My

=2 mi=m ny

..1 _ u‘i(m"ini) = (u“‘im""l) ni

Then Si = Uu mi =
- -1 = s— °. ! 3
= (mu) ny = ny Cs=mues3, (1= 1,2,...t-1)
=

And thus the result follows, /

3,5,8, Lemma 3 If J is a left N-subgroup of N then the

-1 -A
clements of 5 °J (= {fEn PR 9 | (55, %3) €S X J}) are of

the form S—ij vhere s € S, J € J.

t
proof ¢ Let «a = X S5 X E S J.
— — i=

Since 81,52,000, St £ s, by 3.507 we have l’liyrl?,..., n.t € N,

-4 _ 1 -
s ¢ S such that S5 % s ny.e (1= Lyzgeees t)
; s~ x
Thus, % 2 %5
-1 ; n.x, (as s being distrib ti -1
= 8 LMt g distributive, s ~ is also S0.)

i=1
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-1 t
= 8 X ji ( jj = n;X; € J, for X; € J)

L, (=5 3 ) S

It
0
o
-

3.5.9. Lemna 3 If J is a left N-subgroup of N, then

S-lJ ( = {s-lx | (s,x) € S x J}) is a left Q-subgroup of .
X, sgi y € S-iJ,

-1 -5ty - si%‘+ sMy) e 545, (from 3.5.9).

-1

Q, then g = s n, for s € 5, n e N,

(s—in ) ( sii x)

n
o
Q
~~
)]
=
>
»
S
fl

(s 1y (s7M)) x

= (Sglm)x, [Sgim = (S-il’l)( S—l ,1) e Q]
A
= S, (mx)
= 851 y , where y = mX € Jasxed,meN
- -1 -4
= q(511 x) =8, Y E S J.
Therefore, S-iJ is a left Q-subgroup of Q. /

3.5.10, Lemma @ If J = 1(T) vhere T ¢ N then

L0 N=J

(1) S

(ii) s7Y = 1(1)
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Proof ¢ (i) x e J = X €& S—iJ NN (for x = 1_1x)

= Jc sYhnw.

Conversely, let y € S-iJ N N then

1

- S8 JNNgcgld.

Thus, s’iJ AN=J. /

(11) Let x € lQ(T) then xI' = (0) where x = s—ln, seS,ne N

So, (s_in) T = (0)

o sl = (0)

= nl = (0)
= n e 1(T) = J.

= X = S-in € S_,]-J.
= 1,(T) ¢ s,

-1
Conversely, let y € S 7J then

y = s"ij, for s € S, Jj € Jo
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So, 3T = (0), as J = L(T)
= (1) T= (0
> slje 1y(T), =s sl e a

= s g 1y(T)

Therefore, s7Ly = lQ(T). /

305-1_]-. Lemma 3 If {Jl,Jz’...’Jt} is an independent fa[nily

1

of left N-subgroups of N then {S_lJl, s, 5%} is en

independent family of left Q-subgroups of Q.

pProof ¢ By the above lemma each S—iJi( L= 12,000, t) is a

left Q-subgroup of Q.

/\
-1 . -1
m

- =S-1‘j + + ) + +S-l . "‘(.)
Then, y = sm Jm 1 l oo e = Jm PRIPS t Jt 1

where Spqse++s St £S5, Jyreeerdg €9 and A carries usual meaning

of omisdan .

Now, by 3-5-7p we gEt n1’000’nt e N, 8 € S such that

1

- -1 . - . -
1n j. = & TNqjqtes.+8 n Jptesets ntjt

1, @ . -1
= 5" (nqdytee o tipdpterotngdy), as 87 distributive
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N t

+...+nmjm+...+ntjt e Jy N

1;émJi = (9)

= nJy = Md

(Since {JQ""'Jt} is independent)

Thus, y = s;l Ip = s_lnmjm =0
t

Hence S-ﬂ'Jm n z S 1Ji = (0)
i#m

- -1 1y
Thus { S 1J1, S Jpyeees S J} is an independent family of

Jeft Q-subgroups of Q. /

3,5.12, Lemma ? Let A be any subset of a d.g.nr. N then

the set QAU = {ff Xj83Y4 | x5,y; €Q, 83 € A} is a left Q-subgroup
n

of Q.

: = I x _ s 9. S

Ezggg For any « fin xlaiyi’ B finSA}H_5ze QAQ’ we

clearly have a-B € QAQ as we can write = 9. by &) = (-?i)bigi i
t

Since N iS dog‘9 Q iS also S0.

t
\8 .
Now, let 4 € Q@ then q = jii a0 q; are distributive elements
of Q.
t r )
= s Yy X.a .
So, 4o ( .5 qJ)( o1 i i¥i

J

r r
- T X;) @a;yjteset I (q.X;) a;y; € QAQ .
5 (97%37 8171 R A
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Therefore, QAQ is a left Q-subgroup of Q. /

For the sake of completeness, we describe the results of Tiwari

and Seth [53] leading to the sufficient condition for coincidence

of a complete near-ring Q(N) of left quotients with a classical

near-ring of left quotients of N,

Here N is a d.g.nr. with 4 and S is a semigroup of some

distributive non-zero-divisors of N, Here N satisfies the common

left multiple property (CLMP), in otherwords the (left) Ore

condition W.r.teSe

3050130 l-'__e._r_mJ_é. (Lemma 1.1 [53]) t For 7)6 S, N?\ is a dense

left N-subgroup of N.

3,5,14, Lemma (Lemma 1.?[53i)= Every dense left N-subgroup

is weakly essential.

Q(N) is a regular

3,5,15. Corollary (Cor. 1.1 [531):

near-ring.

:+ If Ne S then A is a dis-

16, Lemma (Lemma 1.4 (53])

3.5
ro-divisor in Q(N) .

tributive non-2e

3,5,17 Lemia (Lemma 1.5[53] ) ¢ Every non-zero-divisor of

Q(N) is jnvertible in Q(N) .

Now, if 4 € Q(N) then Nqﬁi is dense. Hernce it is weakly
’

go it contains 2 A e S. Thus ANq=aeNorg-= /ﬁ’la € Ccl'

essential.
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Hence Q(N) is a classical near-ring of left quotients w.r.t.S.

Thus we get

3.5.18 Lemma (Theorem 1.1[531)2 The complete near-ring Q(N)
of left quotients of N is a classical near-ring of left quotients
woroto SO /
aining part of the section, we consider N with

In the rem
distriQEﬁively generated left annihilator such that a weakly

essential left N-subgroup of N is an essential left N-subgroups

S will mean (as in lemma 3.5,7) a multiplicative semigroup of

distributive non-zero-divisors.

3,5.19 Iheorem 2 If N is strongly semiprime strictly left

Goldie then N gsatisfies the Ore condition w.r.t. S.

PI'OOf : Let a € S. Then by 30209p Na c e N. And so by 3.1.8,

(Na} b) = N, for b € N.

Therefore, by 3.4,5, (Na } b) contains a non-zero-divisor

(say) ag.

Thus, aib = bya for some b,l e N.

Hence N satisfies the Ore condition w.r.t.S. /

Now we note that in case of an N as in theorem 3.5.19, Ore

n is satisfied w.,r.t. S and if N is d.g.nr. also with S

conditio
stributive non-zero-divisors) then by lemma

(a semigrow ©f di

3,5,18, we get
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3,5,20 Theorem 6373 s If N is a strongly semiprime strictly
' ijeft Goldie d.g.nr. then the complete near-ring Q(N) of left

quotients of N is a classical near-ring of left quotients of N

w.r.t. S. /

3,.5.21 Theorem t Let N be a strongly semiprime strictly left

Goldie d.g.nr., with @ as classical near-ring of left quotients
Of N woroto S.

Then Q@ has no nilpotent left Q-subgroup .

Proof If possible, let L be a left Q-subgroup of Q such

that L2 = (0). Then LNNis a left N-subgroup of N.

Write st (LNN) = {S—lx | s €es, xe L NN},

Let y e L » Then y = s-ln for some 8 € S, ne N .

So, sy =N € N. Also, sy € L (as L is a left Q-subgroup of Q).

Therefore, sy € L NN

s-i(sy) € s'i( L N N)

= Y

= Lc s’i(L N N)

- -1
Again, S 1(L nN)egsS Lgl

Thus, L = 5 (L NN
Also, (LD N)° = (LN N)(LNN) glL= ¥ = (0)
> ( Lam®=()

so. L NN is a nilpotent left N-subgroup of N, And by 3.2.5,
’
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we therefore get L N N = (0) which gives in turn, L=S-1(LﬂN)=(O).

Thus L° = (0) gives L = (0).
Hence Q has no non-zero nilpotent left Q-subgroup. /

In what follows N contains distributive non-zero-divisors

only.

3.5.,22. Theorem[IBéj): If N is a strongly semiprime strictly
left Goldie d.g.nr. then the classical near-ring @ of left quotients

of N w.r.t. S satisfies the dcc on its left Q-subgroups.

proof &t Let A,B be two left Q-subgroups of Q such that B < A.

Now, BN Ng ¢ A NN implies M ¢ , N, for some left N-subgroup

M of N with Ma # (0), Mo ¢ B N N for each non-zero ¢ €¢ A N N

(by 3.1.6.) -

And therefore by 3.4,5, M contains a non-zero-divisor (say) c.

Thus, a = ¢ lex) e@ (BNN) g QBB

= ANNcB

As in the proof of 3.5.21, we get

A = s’i( ANN

= AcC s'lB c B, a contradiction,

Therefore, BNN $ e A NN,

g0, we have a non-zero left N-subgroup X of A N N such that
’

xn@nN =
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we therefore get LN N = (0) which gives in turn, L=S_1(LﬂN)=(0).

Thus L2 = (0) gives L = (0).
Hence Q has no non-zero nilpotent left Q-subgroup. /

In what follows N contains distributive non-zero-divisors

only.

3.5.22. Theorem[137j)= If N is a strongly semiprime strictly

left Goldie d.g.nre. then the classical near-ring Q of left quotients

of N wer.t. S satisfies the dcc on its left Q-subgroups.,

proof : Let A,B be two left Q-subgroups of Q such that B c A.

Now, BN Ng o AN N implies M ¢ , N, for some left N-subgroup

M of N with Ma # (0)y Mo ¢ B N N for each non-zero a € ANN

(by 3.1.6.) -

And therefore by 3,4,5, M contains a non-zero-divisor (say) c.

Thus, @ = c_i(ﬁa) eQ@(BNN) g@BcB

= ANNC B

n the proof of 3,5.21, we get

As 1
A= s™1( A n )
= Ac 5-15 c B, a contradiction.
Tpnerefore, B NN $ e A NN

go, we have & non-zero left N-subgroup X of A N N such that
’

xn@n N =
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= NxN(BNN)cXn (BNN) = (0), (for x ¢ X)

= Nx N (BNN) (0), NXSXSAON.

Similarly, if C is a left Q-subgroup such that C < B, then
we get a non-zero left N-subgroup Y SB NN and Ny n (C n N) = (0),

(for y € Y), Ny c B N N,
Therefore, Nx N Ny c Nx N (B N N) = (0).
= Nx N Ny = (0) .,
Hence {Nx, Ny} is an independent family,

As above, if D is enother left Q-subgroup of Q with D c C,
then we get a left N-subgroup Z ( # (0)) of N such that Z cC NN,
Nz n (D NN) =(0) for ze 2, Nzc G nN,.

So, Nx N Nz = (0) = Ny N Nz.
Now, Nx N (Ny +Nz) c Nx N (( BN N) + (C n N)))
chNxn (BNN) =(0), (as Ny < B NN,

NzcCnNgcBANN)

= Nx N (Ny +Nz) = (0)
If « € Ny N (Nz + Nx), then o = NGy = n,z + nBX’(n’i’n?’nB € N)
= - nzX = -My + nz e Nx N (Ny + Kz) = (0),
= nqy = mz e Ny N Nz = (0)

= q =20



148

Thus, Ny N (Nz + Nx) = (0)

Similarly, Nz N (Nx + Ny) = (0).

Procecding in like manner, we get an infinite independent

family {Nx, Ny, Nz,...} of left N-subgroups of N with the strictly

descending chain A > B> C > .., of left Q-subgroups of Q.

Since N is strictly left Goldie, we cannot get such an

infinite independent family of left N-subgroups of N.

Therefore, Q@ can_not have an strictly descending infinite

chain of left @-subgroups. In otherwords, Q must satisfy the dcc

on its left Q-subgroups. V4

We now discuss a partial converse of above results,

3.5.73. Theorem ¢ If the classical near-ring Q of left

quotients of N is strictly left Goldie then so is also N,

JocJdz g ... be an ascending chain of left

proof ¢ Let Jq &
annihilators such that

Ji = J.(Ti), Ti_C-No

-
Then S Jq &

-1
eaCh ) Ji = lQ(Ti)’ ( bY 305.10)

As Q is strictly ljeft Goldie, we therefore get t ¢ 7% such

- -1 -
that 5 50g =5 Jtd """
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1

= (s"th) NN=(SJg,q) NN=...

=> Jt = Jt'l"l F eee (by 3.5.10)

Hence N satisfies the acc on left annihilators.

Next, if {A;} is an independent family of left N-subgroups
-1 ,
of N, then by 3.5.1L, {S As} is an independent family of left

Q-subgroups of Q.

So the family {A;} cennot be an infinite one; otherwise

{S-iAi} will be an infinite family contradicting the Goldie

character of Q.

Thus N is strictly left Goldie. /

3.5.04, Theorem ¢ Let Q (the classical near-ring of left

quotients of a d.g.nr N) possesses only central idempotent satis -

fying the dcc on its left Q-subgroups.
If non nilpotent elements of Q are distributives and Q has

no non-zero nil left Q-subgroup, then N has no non-zero nilpotent

left N-subgroup of it.

Let K be a nilpotent left N-subgroup of N such that

Pr‘OOf H

Now, by 3,5,12, Q K Q is a left Q-subgroup of Q. So by 3.5.2,
’

there exists an idempotent e ( #0) ¢ @ such that
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QKQ = Qe.
As e € Qe we write e =

Now, X; € Q= X4 =385

By 3.5.7¢, V€ have uj

SO, e = ¥ xikiyl = ot

fn xikiyiv Xi’yi e Q, ki e K.

-1
i Ny, 83 €S, 0y N

e N, s € S such that

]
™
n
|
=
[T
=
'—k
=
-
<
e

A
0
™

<

[
=
[y
o
=
<
e

n

fin
-> Se = ) \' yi e KQ.
fin
2 0)
= Ksecgc K@ = (

= Kse = (0)

- (0) , (es e is central)
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= Ke = (0) , (as s 1is non-zero-divisor)

Now, k e K= k =qe , q € Q@
= k = (ge) e

ke

= Kc ke = (0)

= K= (0)

Thus N has no non-zero nilpotent left N-subgroup of it. J
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= Ke = (0) , (as s 1is non-zero-divisor)
Also, K c QKQ = Qe
Now, k € K = k = qe , q € Q

= k = (qe) e

ke

it

=> KgKe=(O)

= K= (0)

Thus N has no non-zero nilpotent left N-subgroup of it. /



CHAPTER IV

Some radical characters of a left Goldiec near-ring

A subnear-ring of a Goldie near-ring need not be Goldie. But

here we prove (&Mj)that some properties of a Goldie near-ring
(existence of classical near-ring of left quotients in particular)

are inherited by a subnear-ring (without being Goldie) when the

parent near-ring is radical over it. Here we extend some results

of B.Felzenszwalb [17] to left Goldie near-rings with radical

character.

We know that an Artinian ring with unity is a Noetherian ring

and a Noetherian ring has no infinite direct sum of ideals and

always satisfies the acc on annihilators. On the otherhand, commu-

tative integral domain like Z[Xili=1’2’°°3 XXy = Xin] satisfies

the later two conditions, yet it is not Noetherian, for we have

a strictly ascending chain of ideals viz.,

In this way, @ near-ring with acc on annihilators having no

infinite direct sum of ideals (near-ring subgroups) need not
satisfy the acc or th
ntain some parts satisfying the acc or the dcc on the same,

e dcc on its subalgebraic structures, but

it may ¢€©O
(152)
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([_—[37]) on left Goldie near-rings

acc or dcc on its subalpebraic structures.

Here we prove the results

with parts satisfying the

The results obtained here may be called an attempt to study what

may be termed as the Artinian radical of such a near-ring,

One may expect to get more elegent structure theorems in case of

a left Goldie near-ring carrying such a non Goldie part in it.

The chapter 1is devided into four sections. The prerequisites

of this chapter are included in the first section. The second

section contains some basic results on a near-ring which is radical

over a Subnear-ring (as defined).

The third one mainly consists of results leading to the exis-

tence of classical near-ring of left quotients of a subnear-ring

A of a left Goidie near-ring which is radical over A.

The last section contains some interesting results on left

Goldie near-rings with parts having minimum conditions. Here we

prove a result on a jeft singular subsets modulo maximal

r of a left Goldie near-ring which leads us to the

annihilato

cyclic structure of an ideal I satisfying the dcc on its right

Another important result pro
as an invariant subnear-

ved here is a sufficient

N-Subgroups.
al(which is minimal

condition on an ide
N-subgroups) to be a near-ring group

ith dcc on its right
r-ring with dcc on its near-ring subgro
e of N, Also, if N is a strongly

ring w
ups which is an

over a nea
n of an epimorphic imag

extensio
left Goldie near-ring where every weakly essen-

semiprime strictly

subgroup 1is essential then in case of a countable left

tial left N-
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ideal I with dcc on its N-subgroups, the N-group N/l(I) also

inherits the same character as with I,

4,1. Prerequisites

4,1.1. Definitions. An N-subgroup A of an N-group E is

said to be closed if A has no proper essential extensibpn in E. In

otherwords, A is a closed N-subgroup of E if for any N-subgroup

B of E, Ag o B implies A = B and we denote it by A £ _ E.

Thus a left N-subgroup A of N is a closed left N-subgroup of

if A has no proper essentlal extension in N.

4,1.,2, Lemma $ Let C, D be two N-subgroups of E such that

o C then, for an N-subgrowp M ( cC) of E,DNMg CNM
proof ¢ Let X ( A 0) be an N-subgroup of E such that
XcgcnMgC, M.
Thus, M N X = X.

Also, (DnM)nX=Dn(Mnx)

=DN X
# (0), (aSDEeC)

Therefore, D N M c o com./

L.1.3 Lemmali}j] ¢ Let C, D be two N-subgroups of E and B
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is an ideal of E such that B { G, B gD g ,C then D/B = c/B .

Proof : Let M/p ( A 0) be an N-subgroup of C/g with

(0) (= B)

M/B n D/B
This gives, M N D = B.

NowDg,C=>MNDg MNC (by 4.1.2)

= Bgg, Mnc

But B, being closed we therefore get B=M N C =M

Hence M/B = (-6) . Thus D/B € e C/B ./

4.1.4, Lemma ¢ Let P be an ideal of N such that P { . N.

If a weakly essential left N-subgroup of N is essential then a

weakly essential left N-subgroup of N ( = N/P) is also essential.

proof ¢ Let A = A/P be a weakly essential left ‘N-subgroup

N. Then by following the steps of 3,1.9(c), we get that A is a

of
weakly essential Jeft N-subgroup of N and by hypothesis, in turn,

A E e No
Again, since P & c N, PcAcgh, by 4.1.3. we get A/P Se N/P'

Thus A € ¢ N° 7

4.,1.5 Note ¢ If d is a non-zero-divisor in N, then
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(1 r ) L+t

) or any t € 2, 4  1is also a non-zero-divisor in N

2 - . .

(2) d is also a non-zero-divisor in any factor near-ri
N of N

140 o
1.6. L@E&Q[Ilhj + Let N be a strongly semiprime strictly

left Goldie near-ring where every weakly essential left N-subgroup

is also essential.

ring A of N satisfies the dcc on left annihi-

Then any Subnear.—

lators in A.

Proof By 3.2.17, N satisfies the dec on left annihilators.

e dcc on left annihilators (by

And A, in turn, satisfies th

1.4.5.) « /

4,1,7, Definition ! An ideal (1eft/right) T of N &s saild

untable as & get.,

to be countable if it is co

et I be a countable left ideal of a

4,1.8. Lemma[j3i] s L
strictly left Gold

ie near-ring as in %, 1:6,

strongly semiprime
t 1(8) = 1(I).

is a finite set S of I such tha

Then there
proof ¢ For yq € I, l({yi}) =5 1(I)
then
Let y, € 11 V2 £
=

{Yi} & {yg1¥2
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= l({yi}) 2 1({Y1!Y2}) = 1(1)

Thus we get a descending chain

1
({v,}) 2 1({yqsve}) 2« (o 1(I)) of left annihilat
ators

which stops after a finite steps, by 3.¢.17

Suppose t € 7% such that
l({Y1!Y2’---th}) = l({yi!yg!"°ryt+1}) = ..o = 1(I)
W(1). /

]

= { ylpyZ;--'vyt} ( = I) then 1(S)

Thus, if S

b2 s A-radical near—-rings.

r-ring whose idempotents are central

regular nea
e have examples [16] of abelian

[36]. ALSO W
ts are only I

If N is @
N +) 18 abelian

ose idempoten

then (
on nilpotent elements

near-rings wh
gubset D of distributive

r-ring N, the
a subnear—ring of N (it
i elements are

non nilpoten
t
+ Ly that x € De TRUS ¥ sive

abelian nea
is actually a ring). Here

In an
distrbutives then

elements of N is
we note th

for each X E N,

wing definition.

the folloO
near~ring,0f N. Then N

b 2ela Qefinitions . Leb
.o radical over A)

is called g—radical (or N 12
that xt g Ao

if for each x € N

there exi
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If the near-ring N is A-radical then we simply say that
at N

is a radical near-ring.

In the Klein's four group, we note the existence of such
ch a

radical near-ring.

Page 339-[421>= N = {O,a,b,c} is a

4.2.2. Example (E(18),
he table 1.1(i)] and multi-

r-ring under addition [defined in t

nea
y the following table.

plication defined b

0 0 a b (o
0 0 0 0 0
a O‘ 0 0 0
b §) 0 0 a
c 0 0 0 a
Table 3§ 4,1,
Here A = {O,a} is a subnear-ring of N and for each x € N,
t \
= 2) € z% such that x € Ae Thus N is A-radical.,

there exlsts a t (

ot k (A 0) £ N be such that for each
g the condition

nd satisfies the same

42,5, Lemma[[14] ¢ L .
kx k = O. Then

€ 72* satisfyln

2 0
= a

£0) el such that a

there is an a (

hypothesis a8 L
_ k and thus k does

2 _ 0, then we consider & =

proof * If k
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k., Then by the given condition we

1f kc ié 0, we choose X =

m
get k = 0 form (€ Z+) > 3.

let a be the minimal of m such that k¥ = O,

Now,

Then kaﬁi £ 0 .

As o=l 2 2, it follows that

c(a-1) = (a-1) + (a-1) 2 (1) + & = a+l > «

Hence KZ(a—i) - 0, Thus & = a—i( # 0) is such that & = G
ith kxtk = 0, we get

Also, for each X E N, as W€ have t € 2V
t —i t a—i

ax a

Ka-i( % 0) does our job. ,7

Thus a =
strangly semiprime

b 7 ailhy Pr oE.(_)f*j_tiOn El/—}J Let N be @
ft annLhLlators and k ( # 0) € N is such

near-ring with agcc on le :
T
'h kK = O,
that for cach X €N cpere exists ¥ € 2* with kxk = 0
fé O) £ N with 86 =0 Qa‘t‘]_qfies the
= O.

jsts an a (
r oan m ( # 0) ¢ N with m®

Then there ex

Same hypothesiﬁ as K and amd = 0 £0
] N a? -~ 0 such that
g , have @ ( £ Q) & T
roof & B T
- ’ - t + with ax @ = 0.
for each X € N there exists @
2 [
_ 0, we have m+maxa(e N)
N with m y
Now, for an m( # 0) €
b Z+
such that for some o E y
i b

(
a(m + maxa) a =
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a(m+maxa)“'1(m+maxa)a=0

a-1
ma = 0 (as a2 = 0)

= a (n+ maxa)

= a (m + maxa)®™ * (o + maxa) ma = O

- a (m* ma',xa)a-z (maxa) ma = o) (a5 m = o)

= alm? maxa)“'z (ma) (xama) = ©

= a(m* rrzaxa)""'3 (ma) (xama)2 =0

-2 _
= a (m+ maxa) (ma) (xam3)°‘ _ 0 [repeating the process]
A

- ama (Xam$;1)a =0

- (Xama!a =0

Thus Nama 15 2 nil left y-subset Of N (for each x & N, xama
( € Mama) 18 nilpotent). And DY 3,707y N cannot have such a non-
zero nil left N-subsete Therefore, Nema = (0) which gives (as 1 € W),
ama = O. //

4L,2.5 pPro osition\Ilh] ¢ Let N be as in 4,20, 1f Py € N

e~ @ ) 2
= d
with pg = 0 tner pad = o for & ( # o) e N with @ 0 and satisfies
the same hypothesi® as k in 4 e
( #0) e N 32=Osuch
g__x;q_gf ¢+ By 4,23y there exists @ '
B t
o have 8 © € o+ with aX & = 0
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(ayp) (ayp)

Now, for y € N, (qy“)c.

1

(ay) (pa)yp
=0 (as pq = 0)

Sn, by L.7.hy vie have a (uyp) a = 0 vhere a ( #0) e N, a -0
k.

and a satisfies caneé hypothes Lg as

Now, (ypad) = (ypaq) (ypad)

\

= (yﬂ)(a(qyn)a)q

= 0 [as a(ayp)d = 0]

2 :
— (Hpagal = (0)
of N and by 3.2.Ty WE

0. /

Thus Npag is a nil lefk N—subset
therefore get Npad = (0) which gives pad =

be a atrongly semipnrime

C’J‘s_i_lg'_j;g_gﬂlh l) s Let N
at for

1}02060 PI’Op ;
ihi o) als . N such tH
near-ring wilta acc on 1oft annihilntors. f ke N
e £ il t | k : O
* it - i ; °
each x £ N there exists a t € 4 with kx k = 0 then
2 act - NEl by 0 R
proofl 8 1f poscinles let k # O
Q- ’) |
s = cuch that fou
~ 3 we pet 2 (#0) ¢ N with a = 0
Then by Lo o ; t . 0
' § Y a = l
jsts g & eatisfying a2
each X € N there eyists @ o
= 0
T'hus, 2 = 1 = 4 X a

1]
C
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Suppose, a > 1 then ax®a = 0 gives

(axa—l)(xa) =0
= (axa_i) a (xa) = 0 [by 4.2.5]
= (") (xa)® = 0

In like manner, we get (ax*?)(xa)” = 0. Finally we obtain

a+l . :
(xa) = 0. And this gives that Na is a nil left N-subset of N
Hence by 3.2.7, Na = (0) giving therbby a = O (for 4 ¢ N) which

is not true.

0. /

Therefore, k

4,2.7. Proposition [[14]] ¢ Let N be a strongly semiprime

near-ring with acc on left ammihilators and A be a subnear-ring

of N such that N is A-radical.

If for a € A, lA(a) = (V) then 1(a) = (0).

proof ¢ Let x( #0) € 1(a)

e athasd

t
L+
Since N 18 A-radical, we get 2 t g 2% such that xo e A

Now, X E 1(a)
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15 1.5 | t)t‘] t; 1 e nce .4 A _Lb‘: ]l..'. L ] L J-—C )| ) £F 11 I ‘\!
& ° = C {. §
- ,l"O-U o]

bg 3.7, 1a) = (O« 4

Hence

4,2.8, [roposition [[14]] & Let N be as above. Then A

nil left A-subset and for a;,a€ A,

cannot have any nonzero

Aay N Aay = (0) implies Ney n Ma, = (0) .

pProof : Since N satisfies the ace on left anninilators then
by 1.4.5, A also catisfies the acc on left annihilators.

t left n—subset of A such that B2= (0).

Let B be a nilpoten
auch that X

. ; t . :
Again for x £ N, V€ get t € Al e A (since N 18
A-radical) .

Therefore, bxtb ¢ BAB, for b £ B

t 2
= px bgBB = g“ = (0)

Ol

I

= bxtb
jence B = (0) . Therefore A

5.2.6, we et h = 0.
o can prove

And so by
gimi-larly w

0 nilpotent left p-sihsel.
Thus A 18 8

has no non-zeTr
t Aasubset.

1lpotent rizh
the acct

no non-zero n
satisfies

that A has
A also

Strongly ceminrime near—-ringe. Moreover,
A i a no non-zero nil
on its left annihilators. Hence by 3,067y it has &
left pN-subset.
n Aa~ = (0)

- g, & A, A8
Now, let for 41", g 1

n Aa-
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F & i' £ ] } -
(:_ =5 "1 S A PRSI ] i £ i £ F h
) 1_ 1_ X.« o) . [];, X,J = P], :\? B A, . € !I

Th - .
1en, for d1X1 e N, we have pot a t e 2% quch that

E
(ay%q) " € Ae

Now, (aq%1) t8:1

t times

I

g7
as (Xiai)

t
ai(x2n2) , (as %2, = Xp85)

t e |
= (a,l}fi) :'J,l = ( a/l(x?'ﬂ?‘) XZ) 82 E Aﬂ? (Sll’l(;e %)32,‘&25 A)

t —
Thus (ﬂdxi) ag F Aay n Aay, = (0)

Yams (xia&)

| £ 41 ;

(t+1) times

t

= ¥a (ag*1) 2

= 0

nil 1eft Awsubproup of A. !lence i1 = (0) by what

S0, 'l is 8

we have obLained above.
. e (1 )

TherelOres H = lag n Na, e

Now, let ¥ E Nal(ﬁ Nag s

Then, ¥ < ¥18
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<+
By A-radical character of N, we get at € Z° such that

t
(a5y,) " € Ao

t
ap(v222)

t
SO, aZ(YQai)

t
' = (32YZ) 82 € Aaz

E : a ’lE a:‘ /Ia Y aﬂ £ Na
‘ 14 :
. » o (. i)

t _ o
= &y (712

X
1 o (yqep)( 7231

t
Thus, yt+1 = (yiai)
)t
= (yzaz)( yn281
(yren)") = [ by (11)]
8
= yo(a2(¥2%1
. And b 3.?.7
il left N—subgroup of N y ’
ig a nt.
et N81 n Naz =

therefore we &
above. If for some

et N be as

» g, propostt jon[T14 JE
4.,2.9. L |
(0) then pa & o A

ace A, lA(a) #
Suppose Na € e

” a contradiction.

A= (O)v
=> lA(a) - 1(a) N
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If possible, let Aa g A and B is a non-
’ Se a non-zero left N-subgroup
of N. So B can not be nil.

Let b (#0) eB such that b is not nilpotent,

we get a t € z¥ such that bt € A,

Now, N being A-radical,

As 1 & A, Ab® £ (0) end therefore

aa N abC A (0) (es A2ce A)

t
Again, Aa N Ab° g Na 0 AP cNaNB.

= Na N BF# (0)

h Contradicts what we have proved above,

=> NageNWhiC

/

Therefore, pa £ o A

¢ Let N be a strongly prime near-

4,2,10 . propositioll [[llg]
If a,b e Ny b # 0 and for each

ring with acc on left gnnihilators.
0 then a = 0.

X ¢ N there exis

proof ¢
t..o} -
Gonsider B = {y e N | ax'¥
t, _ 0

g Be NowifzeBthenaxz

= 0, for n € N
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Thus B is a right N-subset of N.

t
Also, ax Z = 0 = z(axtz) a=0

= (za) xt(za) =0

at for each x € N, there exists a

Thus za € N is+ such th
t ezt ' t(za) = 0
e Z° satisfylng (za) X (za) = 0 -
Moreover N being strongly prime, it 18 strongly semiprime

also. Thus by L4.2+6s W& get za = 0

Thus, Ba = (o) -

Now, (NB)(NaN) = N(BN) aN

c w(eN) n(Ba)N = (0)

_, (NB)(NaN) = (0)
(0) [as N is strongly

= NB = (0) or NaN =
prime]
= B = (0), @ contradiction (for b( # 0) € B)
Thus, NeN = (0).
Henee 8 = o (for 1 eN) ¢ /
ition [[1@‘] + Let N be strongly prime with
4.,2.11. EX 0S -
ft ihilators and A be & subnear—rlng of N suc
acc on left anh
strongly prime.
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17 = (0), J # (0) -

S . .
ince N 18 A-radical, for each x € N there exists a

+
t e z* such that <F e A.

FOr‘aeI,ch,b;éO@ axtbeIAJcIJ=(0)

= axtb 0

So, by 4,2,10, & = 0. Therefore 1= (0)

Hence A i8S strongly prime. /

L,3. Radical jeft Goldie near-rings

Throughout the section A will mean @ s

that N is A—radical.

4,3.1. Ib In & strongly gemiprime strictly left
o-divisor in A if and

a(eA)iS

o—divisor in N.

Goldie near-ring N, g non-2e’

only 1f a is a non-zer

e a (€ A) is @ non—zero—divisor in N, Then
y = 1(a) N A= (0)

proof 3 Suppos
ves lA(a

1(a) = (0) = r(a), whic
(by 1.3.21) @nd ry(a) = r(a) NA= (0) (py 1.3.21)
non—zero—-dlvi%or in A.

ubnear—ring of N such
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~ 1(a) = (0) , (by 4.2.7)

= Nacg N, (by 3,2,9)

4, it follows that a 1s a non-zero-

And therefore, by 3.2.1

divisor in N. /o

Theorem [[14]] i Let N be strongly prime strictly

bh,3.2
If left annihil

left Goldie aS in 4.

1.6. ators in A are distributively

ntial left A-subgroup of A has a non-zero-

\
generated, then an es5€

divisor.

proof % BY L,1.6, gubnear-ring A satisfies the dce on left
#—_-

annihilators.

ntial left A-subgroup of A.

(a) 18 minimal in A.

[by 4,2.9]

A-subgroup 7 (#0) of A such that
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If x € Jq and d e 1A(x+a) then d(x+a) = (0).

3 + 84, where 84 € S (the set of

By hypothesis, d =
fin

distributive elements) and lA(x+a) = <S>,

Then si(x+a) '= 0, for each 1

=5 six=(-si)a

=> (251)x=(£—si)aeAa,forsieA.

n aa = (0) » [by (1)]

Also, x € Jg = ( Zisi)XEJl

=> dx = 0

=> d e lA(x)

Again, das(z_tsi)az(zisi)x

inSiXCJq_

Thus, da € Ja N Aa = (0)
= da = 0
= dE€ lA(a)
> dE€ lA(a) n 1,( )
Thus, A(x-t-a) c lA(a) n lA(X) c lA(a)
AS lA(a) is minimats t follows tha
(a) N lA(x) c lA( )
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SO, (lA(a)A) (JiA) =
is a left A-subgroup

In

= (0)

(a) A and JaA is an invariant

Now, JpA £ (0) and each of 1,

Since A is st

rongly prime by 4.2.11, it follows

subsets of A.
(ss 1 € A) .

that 1A(a) A = (0) and hence lA(a) = (0)

we get 1(a) = (0) -

Thus by using B2y

Then app 1lying 3,249 and

nOn-zero--divisor in Ne

Hence bY 4,3.1, &

n a strongly prime strictly 1eft

(gl
L, 3.2, the

t of non—zer

gatisfies the Ore

b4,3.3. Theorel
subnearring

r-ring 88 in
.5 (the se

Goldie nea

condition Wele

5 with & € S

y = (0)

proof ¢ Let a,b €

) = 1(a
(by 3,2.9)

s Nacel
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Suppose, Aa ¢ o A

Then we have a left A-subgrow © (7 0) of A such t
ch that

aa n c = (0) .

ThenAaﬂAx;_AanC=(0), (for an x ( £ 0) € C)

— aa N Ax = (0)

(0)9 (bY L"0208).

= Na N NX

(asNacéN)

T

= Nx = (0)

=>x=0,28 contradiction.

Thus, A8 _c:_ e A.

Consider(Aa 4 b) = { xeA | xb € Aa) for b e Al
By 3.1.8 (ha 3 D) S e A and 80 Y 4.3.2 it contains en

e L]
lement &, € S
and thus W€ get aqb = by @ for some Py € A and hence Ore
condition 18 satisfied woreteSe 7
Fi 1y, e come b° our main result which follows fyom
inallYs
qcusse in chapter 111, together with
Tiwary and seth (53] 88 dif
what we haVe ahown abover
Let N D€ g strongly prime strictly
N-subgrouw

,. 3.4, Tneofe® (pale
that 2

lert Goldie d-8" such

of N is essential.
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If N is A-radical and A has distributively generated
i lal - ated left |
annihilators only, then the comoplete near-ring of left ¢ !
. 7 e quotients |

of A is a classical near-ring of left quotients of A w.r.t. t
Y b bhe

set of distributive non-zero-divisors. /

rings with its parts having

4. h, Left Goldie nearz

minimum conditions.

L,,1. De finition ¢ A near-ring N satisfies the left
l

hain condition (L.e.dcc) if any descending

essential deacending ¢l G OIC,
ssential left N-subgroups of N stops after a finite steps

chain of e

L, .2 [ovltlon [{3?}] ¢ If N is with l.e.dcc end P is

an ideal of N then N/p

is qlqo with l.e.dcCe

p imorphism

tial left N-subgroup of N then

if X is an esselnl

ft N-subgroup of N. Consider a descend-

N-subgroup of N

- - = f essential left N
I, 221327 ’
(where El = Ii/P ).
1~ ATy o (T
Then £ (I9) 2 £ () 2 5
' f essential

is a descending chain O
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left N-subgroup of N.

And by hypothesis, we get at € Z+ such that

which gives

=
LI

Iy = L]

Iy = Et+1 = e N

4.4.3, Definition & A near-ring N is said to be a guotiont
N = Nd.

non—zero-divisor d of N,

near-ring if for a

4.4, Theorem [E?ﬂ ]s If Nis a strictly left Goldie near-

c then N is 2 quotient near-ring.

ring with l.e.dc

zero-divisor in N. Then each di,

Prog£ . et d pbe a non~

ie Z+ igs also & non—Zero—diVisor o
i

by 3,29 Nd” € e N, for each 1.

So,

2 3
AlSO, ngNd 2Nd 2 oo ®

+
Since N 15 with 1,e.dccy W€ have a t € 7% such that
th = th+1 = o0
_ (N - Nd) d = (0)
t - ero—div1sor)
= N-Nd = (0) (as d ig a non-2
= N = Nd
Thus N 15 2 quot ient near-ring: /
with L, glve us the following

Now 3,4.2, L, h.2 together



175

hiotsl5 The
¢ Te S orem . .
— [[3f]] ¢ If N is a strongly semiprime st
S I"ictly

left Goldie i
near-ring with l.e.dcc
@ and P € [' the
n N/, 1
p 15 @

quotient near-ring . /

In what
at follows N will be a strongly semiprime strictl
, . ) y left
with distributively generated left annihilato
rs

Goldie d.g.nr.
1 left N-subgroup of N is essential [as i
n

and a weakly essentia

3.5].

£ I ( # 0) is an ideal which is

4.4,6, Theorem NEAREE
ar-ring of N such that P(=1(I) 1"

minimal as an invariant subne

{x e I | cx = 0, for some non-zero-divisor

is closed then Z(I) [ =

c in N ( = N/p)] = (O)v
p is strongly prime.

« We first claim that

Proof
ariant subsets of N with 4B ¢ P

For this, let A,B be twO inv

and suppose B £ P.

Then ABI = (0), but BI £ (0).

deal) aond BI is an jnvariant

subnear-ring of N» we
[ =1 (forl minimal)

B
= 1(BI) = 1(1) =P
= A cP giving thereby P strongly prime.
qs in the proof of 3.h.2, 1t follows that N/p is &

Now,
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strongl i
y prime strictl
y left Goldi ne
ar-ring.

If A iv- ti cC
C A
-— — N

1 i
(1) is closed, it follows from 4,1.3. t
eleo e h at

and since P =
A/

let
x € 2(I). Then cX = 0 for some non-zero-d
o-divisor

=

Now

T( = c+P) inN (= Np):

N is a strongly pri
prime strictl
y left Goldi
ie

Again by 3,4.2,

near-ring.
T (by 3.2.9)

NE c e
T for each ™ e N (by 3.1.8)

This givess

And therefore: (vc 3 1) €
e

is a left annihil in N then by 3.3.5
0o Je)y

Now, if l(T) ator
1(H)/p? where H &
) = {§> for a

[

1(T) =
ALSO, gince 1(H set S of distributive element
s

of N, clearly we get

1(T) = ({s+P | s € s}>
} is again @ get of distributive elements

js also distributively generated

and
of N. Thus 2 ilator i N
sesential 1eft S-subgroup of N is

Again, DY 4,14, @ weakly
also essential.
T satisfies 11 the conditions of 3,45
up of N with

ft N-subgro
ows from bhole

Hence
ssential le
3 that K g o N

if K is an €
ed, it foll

NOW,
e P 18 cl0S

P_c;K_c_N andsinc
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Thus by 3.4.5, K contains a non-zero-divisor ¢ (say)
b Say .

Therefore, cx = 0 for X € z(1).

Again, since c is a non-zero-divisor in N so, by 3.2.9
. oy

-

And therefore, (NG o N for each heN (by 3.1.8.)

3 ) c

Also, by 3.4:5, (NC 3 D) contains a non-zero-divisor d(say)

—

Thus, dneNT

= Tdn =uc for some u € N

1(1)

|

= dn - uc € P

(dn - uc) I = (0)

— (dn - uc) ¥

= (dn) x = (uc) X = 0
= d(nx) - U (cx) = 0
(as cX = 0, by our choice)

= d(nx) = 0
as d is a non—zero-divisor in N)

= nxX € Z(I), (
So, z(1) is a left N-subset of N.
Again, if x € Z(I) then we have CX = o, for some non-zero-
divisor C € N .
This givesS, Tx=0
= % =0 (as T is a non—zero—divisor)

= X



178

]

= Z(I) cP = 1(1)
= (Z(I)) I = (0)
Now, (Z(I))° = (2(I)) ( Z(I))

c (Z(I)) I = (0)
= (2(1))° = (0)

But N being strongly semiprime, by 3.2.5, it follows that

Z(I) = (0) . /

4.4,7. Theorem [[3?}] ¢ Let I be an ideal of N as above

with dcc on its right N-subgroups, then for a non-zero-divisor
d € N (P = 1(I) closed) with d distributive, I = dI.
zero-divisor such that d is

p of I(i e z%),

—

Proof ¢ Since d € N is a non-

distributive and so each diI is a right N-subgrou

t
Again, I o dI o d2I > ... glves a t ¢ 2z¥ such that d'I = dt+11
(as I-satisfies dcc on right N-subgroups)
So, for each X € I, we get y e I such that
t+l
dtx =d Y
> af(x-dy) = ©
s ;% = at is a non—zero-divisor)
- x-dy € Z(I)! (a
- by 4.4.6)
d (for Z(I) = (0), bY
= x = aYs
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And I being an ideal, clearly dI ¢ IL.

Thus, I = dl. //

4.4.5. Theorem [[37]]1 ¢ Let N and I be as in 4.4.7. Then

r-ring group over a near-ring Q of left quotients of

I is a nea
s the dcc on its near-ring subgroups

N( = N/P) where @ satisfie

and is an extension of epimorphic image of N.

2,'ﬁ is a strongly prime strictly left Goldie

proof & By 3.k,

near-ring and it is d.g. as N 1s d.g.

near-ring Q (say) of

5.20, N has a (classical)
es the dcc on its

Thus by 3.
by 3,5.22, @ satisfi

left quotients of N. Also,

left @-subgroupsSe.
o-divisor with d distributive

if a( € N) is a non-2er

Now,
then by b4.4.7, I = dl

> T=41

5> @ -1 |

Consider the map @ axI-1 defined by (d'?,“:'c) -"31-5&",

where L = {1+ p | 11}

Then this map nakes I & Q-group:

We agaln consider the map

axI-~ 1 such that
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! e fi- ' e i y i
?

we get a unique X.

Suppose X,y € 1 with x =5 ( = q 1)

f'hen x - y € P = 1(I)

o x-y e 1(1) n I=1(0)

h—

i ¢ I and suppoSe, qp =%

Now, let qi’q2 e W,

(lzi = X2) .

(where gq i = Xq1
As I is A Q-group, We get
So, by definition, (ap+ qg) i=xq X, = qii + i
Apain, (qaq?)-i = 0y (qél), (a I is A Q-group) »
Supn oS, (q1q7)‘1 =_§3 then (qiqg) i= ¥
Now, §5 = ( qqu) i-= qi(QZi) = o2
=> Xj = qixz
= (a,9p) 7 qq (ap1)
obviouslys for i(unity) cq, 1.i="%h (i€ I)-
Thus 1 is a @—-group where ¢ is the (classical) near-ring
)Lnorphic image of N /

left quotients of N which is an €l
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4,4,9, Theor
.9. lheorem
[[??]] t Let N be a strongly semiprime st
. strict ly

left Goldie -
near-ring where every weakly essential left
N-subgrou;
p

is essential .

If the countable ideal I satisfies the dcc on N
-subgroups
also satisfies the d
cc on its N-sub
groups,

of ..I then N-group N/l(I)

N

proof & I being countable, by 4,1.8, there is a finit
~ nite set

S = {yir}’zy-u,yt} c I such that

1(1) = 1(S) » (1(8) minimal)

Now, ¥i € S = l(yi) ) 1(S) for each i.
= 1(yp) 0 1(yp) N eee N 1(yy) 2 1(8).

And 1(S) being minimal, if follows that

1(s) = 1(yq) 0 1(yp) N oo n 1(yg)

such that

® .- ® Wy

f(n) = (nya'nYZyooo, nyt), .fOI' ne€ No

for any a,b € N, we have

Clearly,
f(a+b) = f(a) + £(b) and
f(na) =1 f(a), for n ¢ N
rphism.

Thus, T is an N-homomO
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Moreover, x € Ker £ & (Xyq» X¥preees xy)=(0,0, 0)
...’

& xy, =0, (fori=1%,2,..., %)
= x € 1(3’1), for each i

& xellyy) N ..o N Llyg) = 1(S)

Therefore, Ker f = 1(s) = 1(I)
so, £(N) € N/l(I)

n, we define # 3 N y(1) ” Nyy @ ... ® Nygo

Agai
(x = x+1(1))

such that B(x) = (Xy4r*¥2

Clearly for any 3,0 € V() ¥e get

v-°°’xyt)!

and so p 1s an N-homomorphism.

b € N/l(I)’ A (3) = ﬂ(ﬁ)

Again let ay
o 00 b
Then, (ayiya}’Z,oooyaYt) = (byi’ by29 ’ Yt)
= ayg = DYy (for 1 = 1,2yee00 B
= (a-b) ¥3 * 0
= a"b [ l(yi)' (for i = 192,“" t)
) = 1(1)

a-b € 1(y2) M 1(yp) M =ee n 1(y¢

=b

= a
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@ is a monomorphism. So N/l(I) can be embedded in

Hence
as an N—group.

Ny, ® Ny, ® .. ® Ny

Now, ¥j € I = Ny;¢& I. Thus each Ny; is an N-subgroup of
I and every N-subgroup of Nyy is also an N-subgroup. of I. As I

satisfies the dcc on its N-subgroups, each Ny; also satisfies the
Thus the direct sum Ny @ eo o ® Ny,

dcc on its N—-subgroupsS.

e character.

inherits the sam
can be considered as an

ding, N/l( I)

D .- @D Nyge

he dcc on its N-subgroups. /

Since P is an embed
N-subgroup of Nyp ® Ny2

Therefore N/l(I) satisfies t



CHAPTER _V

rings with acc _on right annihilators

Near-

In this chapter we confine ourselves to near-rings with

a

weakly right Goldie near-ring [52] . With the idea of a weakly

ring we prove Some interesting structure theoremsi
ng in

regular near-
Oswald [41].

case of such a near-ring in the light of A.
Moreover above ment ioned weakly right Goldie structure of a
near-ring gives rise to a factor near-ring which is a quasi near-

domain.
which the first one

as four sections of
e second one con-

This chapter h
s the prerequisites of the chapter and th

ties of weakly regular near-rings.

contain

tains the proper
ght annihl lators

r-rings with acc on ri
e structure theore

ilators is a direct
with iden-

The properties of nea
mviz., a

e third section. Th

cc on right annih
ar simple d,ge.Nre

are discussed in th
weakly regular d.g.nre. with a
are weakly regul

sum of ideals which

tities is proved in this section.
The fourth section contains the results on strongly prime
near-rings with acc on right annihilators. And finally we prove

1t.

the foliowing resu
(184)
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In case of a strongly prime weakly right Goldie d.g
i ki La i i oeZ N1,
with distributively generated left annihilators, if J i
¢ S * 1ls a
nd M is the left annihilator of J then

maximal right annihilator a

in some anCidl P OO {S - q i i
A (3] Bl £ C a*—: Q@ 3 a ucu-:‘ 1 ne dr d(]“

5.1. Orerequisites ?

If N is a strongly prime near-ring then

5.1.1, Lemnma ¢

1(n) = (0) = r(N).

proof & We have, 1(N) < N.

(L(N))2 c 1(N)N = (0)

o am)f = (0

an invariant subset and

= 1(N) = (0), as L1(N) is

N 1is atrongly prime.

gimilarlys, r(H) = (0) - /

y vrine pear-ring and

N be eronLL
) be 8 lOft N=snbaet,

) [ 4 J-.l [ 4 Lemln(l . l/e l.’r

I (#A0) be? rirht N-subret

of N.

Then r(I) = (0) = 1(J)
! peins @ rirht N—suhset of N, We reb IN ¢ T

Progo

Apaing Ir(I) = (0)
(0)

= (NT) r(I) =
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= NI =
(0) or r(I) = (0), as N strongly prime

~ Icr) =(0) orr(l)= (0)

- 1I=(0) or r(I) = (0)

(0).

By supposition, I # (0), so r(I)

gimiler arguments give that 1(J3) = (0) « /

In a prime near-ring N, for any right

5.1.3. Lemma s
N-subset I ( #£ 0) and left N-subset J (A0)of N, INJ £ (0)
proof ¢ Suppose I 0 J = (0)
Then 1J € I, Jd.
= IJc INdJd = (0)
> Ic 1(J) = (o) , (by 5,1.2)
= I-= (0), not true
HenceInJ;‘(O) 4

Now, Wwé note the following 3
up S of (N;‘f) such

norm al S ubgro

5,1.4. Note ¢ 1f I, J are
tha‘tI@J=Nthenl+J",j+if01"iEI,jsJ.
5.1.9 Lemma ¢ Let IsJ be normal subgroups of (N,+) such
[ ] [ b
that I @ J=N 1t B is @ ormal gubgrow of I (or J) then B is
a = N.
(Ny +) o
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Proolf ¢ Let B be a normal subgroup of I.

Now, by 5.l./, 1+ jg=J+1iforie 1, jed.

(J‘O'.‘" i.;“:]' n = j_ + J, j‘r)'r. n £ l\I .

If b s 2 then

(iri) + b+ (L)

]

-n + b +MN

= - j~i+h+i+j
- i.+hf'i. £ B ac B ie a nﬂ?"‘]al Suhar\()up of I.

sroup of 4

Thiz- B Le a normal snby

[42], 2.6(b)) 1 n I, is the
k ¢ 2

e

5,1,0. Lenna (rilz
near-ring N then s lemonts of different

direct sum of igenls ol a
W2

I, bhave nroduct Q.

5.1.7 [,eming @ Let I J be tu9 jdeals of I such thet

e lof @ :”'“I' < » .
‘ i i« pn ideal of 1 taen
1 Lite tity €- if B 1% an
I & J-= Woana [ hags an iten
B is also all ideal of N.
AL " N
s By D 1.5, B 17 @ normal aubrrouy © N
proofl ¢ r Heledy
Pre.e
or € No
Let b € ne l then bn £ 1 for '
Thus, hn = (bn)e = b(ne)
: a0 i I j € Jo
= b((i‘*‘j)e)y for n = 1+ds 1 ’
= b (1e + j(?)
5, 1.6, J& 7 0)

_p(ie)s Y

bi F B

i

=> hn
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Again, for n,n, € N, we have

n(n1+b) - nn, € I, as 1 is an ideal of N.

Thus, n (n1+b) - nny

[n(n1+b) - nnl]e

n(il+31+b) e’n(11+ji)e’ wnere ny= 1+j, for i, e I,4,8d

]

(as 318 = O by 5.1.6)

ll

n(i¢+b) - nip,

= (i+j)(i,l+b) - (1+3) i where n = 1+J

+h) - (iii+j11)

1(ig*0) ¥ J(ig

. as Jiq = 0, j(11+b) = 0 by 5.1.6.

1

= 1(1&+b) - ii& ¢ B, aS B is an ideal of I,

. deal of N /

kly regular near-rings

5.2, e
following lemmae.

e a regular near-ringe. If A is

e exists an element x € N

C N then ther
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a = axa = (ax) a

= ba, where b = aX € A

ﬁa=ba€Ao:A=A

2
A

2
>
N

, ab € Az. But ab € A.

Also, for a,b € A

Hence A2 c A which gives A2 =A. /

( G(19), Page 340-361[42] ) ¢
a near-ring under addition modulo 6

5,2.00 DpXal amp le

N = {0,1,2,5,4,5} is

ation defined by the following table.

and multiplic

0 0 0 0 0 0 0

2 0 0 2 0 0 2

3 0 3 0 3 0 5

5 0 3 2 5 0 ?
Table 510

d N are inVariant subnear-rings

, {0,2s 4} = B an
n regular

Here {Ovﬁ} = 2 5
2 - B N = N. BuU
of N. AlsOy A B ’

Mor'e overly

t it contains & no

alsoO.

B,N is ideal

element 1.
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In the -
above exanple, we note that for each invariant su
a subnear-

o
= J. But there is an element x € N Such that
a X

ring J of N, J
So N is not a regular near-ring.

is not repular.

Now, we define the following.

A near-ring N is called weakly regul
5 ar‘

5.2.3. Definition @
each left I-subgroup A of I, A% = a

if for eny ideal I of N,

in the example 5.7.7, is weakly regular

So, the near-eing
~ then clearly it 18 weakly regular

Moreover, if N is regula

Lemma $ Let 1 and J be two ideals of a weakly regular

hat N = I & J 2

r-ring (as @ sub

5.2k,
qd identity e €1 then I is

negr-ring N such T
near-ring of N) .

also a weakly regular nea

I being an jdeal of N, it is also a near-vring.

proof *
y left Il—subgroup of I,.

Let 11 be
pet that Iy is an ideal of N also.

fL-subgr‘oup of Iy

AS N =

So A2=A, A{

1 is weakly regular. /

Hencé
is a strongly

kly regular near-ring N

502400 Lemma ;¢ A wea
semiprime near-ring:
2
Let A D® any jnveriant aubcet of N guch that A = (0).
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Now, let a € A ¢ N then Na is a left N-subgroup of
(= po N

(by 1.2.17).

32
But (MNa) =(Na)(Na) ¢ A.A 8s Na c A.
=> (Na)2 c A% = (0)

~ (wa)° = (0)

¢ left N-subgroup of the ideal N then we

Again, Na bein
(as N weakly regular)

have (Na)© = N

2
Thus Na = (Na) = (0)

_—_,—:}a::O(aS)l.EN)

(0)

n

= A
zero nilpotent invariant subset.
rime. /7

Hence N has no non-~

Therefores N is strongly semip
Ever\y invarian'b Slleet of a regular near-

ring N is rpgulnr.
i . .t subset of a regular near-rin
t A be an invarian 2 2
_roof g Lel
N and & € A (e N) «
N such that a = aXa:
larsy e nave X
N peing T gu
Now, XaX - x(ax)
where p = aX € A,
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= Xb A

Write c = xaxX =

m

Then aca = a(xax) a

(axa) Xa

1]

= aXa

ement of A. So A is regular., /

Thus a 15 2 regular el

gular near-ring N is weakly regular
> °

5.,2.,7. Lemnts 1 A TE

regular near-ring N and A be a

proof

left I-subgroup of IL.
By 5_2,5, 1 is regular (I being an invariant subset of N).
g0 we have an element x € I such that

NowletasA(_C_I)'

axa = aoe
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5.3. Heakly reguiar near-rings with acc on right annihilat
1Llators.

acc on right annihilators in N. Then any left ideal I of N has

a left identity if and only if x ¢ Ix for every x € L.

proof & ASsume that e ( & I) is a left identity of I. Then

for each x € L, we have

Converselys assume that for cach x € I, X € Ix. Let N = <S>,
s is a set of distributive e lements of N
g E write R(a) = {s - 5@ | s € st .

For a
i N is with acc¢ on right annihilators and I, being a
ince ; |
By 1.4.2s I is also with acc
bnear—rlng of N
left ideal, is a su
on right annlhllators in I.
1y {r (R(a)) | a € 1} of right annihilators,
go in the fanl I
(qay) r-(R(e)) for e € L
nse ma:{imal one \* T
we can cho 5
y = {x € 1| R(e)* = () } gl
Clearlys rI(R(E’)
= I"-[(R(e))'
We claimy ] '
t Y £ I With y ,é rI(R(e o
11 pOSSible, le
(0)
' e). ¥ #
phen R ) - .

. (s—se)y % 0
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= S(y—ey) ’.l. 0 (S . diSbr‘ibutive)

y-—ey #0 (otherwise s(y-ey) = 0)

But y — ey € 1 (asy € I, 8 left ideal)

= y-eyel(y- ey) (by hypothesis)

for some €4 e 1

= Yy - ey = ei(y - ey)s

= y = ei(y - ey) + €y

+ eyy where €4 = I+ Si S; € S.

i

( %+ si)(y—ey)

L+ (sl— Sie) y + €y

il

- sie) +e ]y

= [ £+ (54
= 1y
where £ =L % (sqy ~ 519) + @
gk (syu) uy =Sl
for some U € 1 ( I being a nomal

group of (N, +))

sub

n
™
i+
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= y e rg (R())
Thus, y € r; (R(f)) buty £ ry(R(e)).

on the otherhand, ry(R(e)) g rr(R(£)).

For, if z € rI(R(e)) then R(e) z = (0)

= (s_se)z.—:o, SSS
- fz=[Z22 (sy~ e) +e] z
=3+ (85 - sie) z + ez

= ez (since (s; - Sie) z = 0 for each 1)

= fz = €2
Now, (5 - sf) z =82~ sfz

_ sz - 5(fz)

- sz - s(ez)

= (s - se) 2

=0 (by ahove)
= z € rI(R(f))-
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Wwe now prove that e ( ¢ I) is a left identity of .

For this, let m € I then R(e) m = (0)

> (s - se) m =0, forse S

=> sm - sem = O

(s is distributive)

=> s(m-em) = 0,

i
™

I+

%
o

Now, for any nel,

= n(m-em)=( +

(m - em) =0 for each 1)

il
(@]
P
o
™M
™0
'—.

) = (0)

—> N(m-—em

- I (m~- em) = (0) (1chN)

B .,’.l 6 I [ y .~ l- y L Il,

) dent Lty of I.. /
e is a 1eft 1
pherefore ©
i Lowing
qp I =N above, W€ get casily the fol

Considerlng .
d.0.0r N with acc on right gnnihila-

ch x € No

~qrollal :
&éﬁl—-w-Ji x € NX for ea

5-.30{”' .
q left jdentity if

and only if
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,)05 :) prop LB ' 1" r
° ° 2 l t- L OT]. H .Ll t 1\] b
! ° 2 e o we lr{..L [FR1
0p0OS & e a weadly esula Ad.o.n
— s e i L '-,._r.
i.ht anninilators th ever en nosses
o e 1 iz L_Cn LV v i. _L I '
y Lled of N no se
- SECeer bl

acc 0N e
-ont of T

with
i.dempol

an identl Ly wh jch is cenl brdil
>pro0f ~ft T-subgroun of I and X € A ( 1)
L1AINS _ L) e

o A 1ot A he a 12
% c !

[ (%) € (T)x &

(T beinr jdenl).

of M. Hence

f].lhel‘[
Also, ¥ have DY L. e LT Nx ig a 1eft N-snbgroud
M B & 1eft flj—~:::11')p;1;w_~n__nl\ of [ as (”V) - Nxs
gince N is wealt Ly resulal and Ihe 18 8 1=ft [-subrroud of T
then (Ny)r-; _ M (by dﬁfil’lil‘. it} -
2 1K R = 1T
s 1 = () o) (i} = (A
ut Ml & T g I 38 an ideal of §oand X - T,
[Jence g I%e
= NX & e he 1
e M & A S i
g - o1t -&——snh*_roun of N (".r)nt.f\_i_nr;d ¥n T.
Thereloro, A LS 1eft | | o
_ L i s oft ﬂ—snbﬁroun AT N comtained i
each 1elt Ifﬂuhproun of 135 @ 1eft | Y
sk 1eft I—subgrom of 1 fzr’ner-afl,hd by «(€ 1) is aleo
HQTICL, gat -
' | and 1 S nntainGd in Lo SymbollCally ’
a left N»subgrom)
= (0= )
I<x> ==Y
1 it ia obvlow that
on the OLHCIPBUC,
— P
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Thus, N<X> = I<x> c L.

How, X € I<x> = N<x> = N<x> N<x> (as N<x> is a left

I-subgroup of 1 and N is weakly regular).

iy . -
Therefore, W€ suppose that X = uv wnere u,v € N<x> .

Also, let u =2 1 Sj end v = I T where s; € S, a generating

set of distributive elcmentsand ry e N.

-—

Hence X =

= ( Y + si)((E rj)x)

av = ( Z‘.isi)(irj X)

= ((£ x5 ry)) x € Nx

> x e Nx ¢ I¥

¢ on right annihilators and X € Ix

N being d,g.nre. with ac
for all X € T then by 5,3.1, 1 nas a left identity e(say).
Now, let ¥ E N such that z = €Y 7 ye
= z¢& L (Lis ideal of N)
> ze = (ey ~ ye) ©
= (ey)e = (ye) e
= ye = Y& (as €8 = e)
= 0
1= (0) «

rthus I ( ze)
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But I (ze) I = (.
) (Iz)(eI) = IzI (e is left ident
entity of I)

= IzI = (0)

SinCe IZ .'-‘ Cl

Iz = (Iz)2 = (1zI)z = (0)

= ez = 0, (e € I)

= z=0 (e is left identity of I)
- ey-ye=0

_y ey =VYe

ntral idempotent of N

2 .
ee = €. {lence € is ce

Also, € 7T
Now, if i ¢ 1 then

je = el = i
Thereforé, e is the ident ity of I which is central idempotent,/

A weakly regular d.g.00 N with acc on

sesses two sided jdentity.

5,35l corollary :

ators in N pos

right annihil
sult

N, we immediately get the re

s Considering I-=

proof *

3, /[

5,3 5 Theoremn A weakly regjular d.g.nre with acc on
i . ect sum Of jdeals which are weakly
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Proof ¢ Let I ( 4 0) be an ideal of a veakly regular d
) O " .E",.?lr'.
N with acc on rirht annihilators then by 5.3.3, I possess

S0l DU SSes an

identity e (say) which is central idempotent of N

Since e ¢ I, lI(e) = (0) .

= 1 (e) nI=(0)

Now, for n € N, n = (n - ne) + ne.

= n ¢ 1(e) + I, as ne & I and (n - ne) e = 0,
= Ngl(e) +1
= N = 1(e) *+ I, (as 1(e) + 1 g N)
= N =1 & L (i1)
Here I 15 an ideal with jdentity e and 1(e) is also an
= 1(e)(Me) = 1(e)(eN) =

ideal of N (hy 1.3.4 and since (1(e) N)e

(1(e) e)lN = (0)).
esses an identity f(say)

Hence by 5.,3.3, jdeal 1(e) also poss
which is central idempoLent ol N.

Thus, I € 1(e) = fe = 0
—> ef =0
= e e L(f).
NOW, let X € 1e) N 1(f)
and X E 1(f)

= X € 1(e)
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= X € l(e) and xf = 0

= X = O, (f is an identity of 1(8))
= 1(e) n 1(f) = (0) .

Also let y ( A 0) € 1(f) but y £ I,

Then y =y + 0 gives y € 1(e) as O e I and N = 1(e) @
= I

Thus, y € 1(e) N 1(f) = (0)

‘= y =0, 2 contradiction,

Hence 1(f) c I.

= I=1(f), as I =1Ieg NL(f) ¢ 1(f).

Therefore, every ideal I (with identity) of N is of the fomm

1(f) for somé central idempotent f of N.

1(e) @ I, where the identity of 1l(e) 1lies in I

Thus N =
and the jdentity of I lies in 1(e), both identities are central

idempotents.

Now, N satisfies the acc on right annihilators)by 1.4.4 N

satisfies the dcc 9N left annihilators.
l(al) is a non-zero minimal ideal of N.

So, Wwe suppose,
(say) such that N = 1(eq) & I

Then there oxists an ideal Iy
is the jidentity of Iy and it is central idempotent of N,

where €4
1.4.5, it satisfies

[42], 6.9(e))

ring of N and so by

is a subnear-
is a d.g.(by pilz

Again, Iy

acc on right annihilators. Also, I,
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and I, 1is weakly regular by 5.2.4.

Thus I, is a weakly regular d.g.nr. satisfying the acc on

right annihilators‘ in I'l’ By the above process,

Iy = 1p,(e2) & 2 where Ip g Ip end both 1y (ep), Ip

are ideals of N by 5¢1e7

Hence N = l(e’l) 45 111(92) & I Ip 2 I, .

Continuing the process, We get

N = l(ea_) & lIa_(eZ) & 112(33) + e

is an ideal of N with jdentity and is of the

where each Ij_

form 1(e).
nihilators and hence the chain

But N satisfies dcc on left an
t stop after @ finite steps (say t).

D e muS

= l e l (e ) @ ° 0
ach of them is distribu-

] @ 1 (et )o
Therefore, I, +1

it identity and e

6.9(e)] and weakly regular

e each sunmand has

wher
rated [by Pilz [42],

tively gene

[by 5.2,4].
‘ the
since each summand 1S minimal and hence gimple. Thus

. result. /
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Strongly prime weakly right Goldie near-rings

5.4,

In [52], a right Goldie near-ring has been defined
as a
r-ring with no infinite independent family of right N-sub
=-subsets

nea
g the acc on right annihilators.

of N satisfyin
at some Goldie theorem analogues satisf
y

It is to be noted th
of course, it 1s observed that non existence

this definition.
e j_ndependent family of right N-subgroups of N is

ept of what has been defined in chapter III
near-ring. In this light, we shall call

annihilators having no infinite

of infinit
right analogous conc

as a strictly left Goldie

N with acc on right
y of right N-subgroups of N as a weakly right

a near-ring

iddependent famil
goldie neur—-ring.

e the existence of quasi

we mainly observ
a left annihilator

In this section,
r-domain gtructure of a factor near-ring of

rime weakly right Goldie near-ring.

nea

in a strongly P
prime near-ring

Throughout the sectdn N will be a strongly
y with 1) with distributively generated left

(not necessaril

annihilators.
nihilators and J = r(T) is a

Let N be with acc on right an
Then M = 1(J) is distributively

maximal right annihilator.
(§> where S is a set of distrib

ated. et M =
r(1(r(T))) = r(T)

sch and r(S) 2
aximal right annih

utive elements,

gener
r(M) =
ilator.

So,
-.:J,aSJisam

= r(s8) = r(T)
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Unless otherwise specified M,J and T will be as above and

non-zero throughout the section.

5.4,1. Proposition : i€ set J is a proper right ideal of N

proof: We have already seen that

J =r(T) = r(M) = r(8) where M= 1(J) and S is a set of

distributive elements with M = {S>.

Now, J = r(T) = ty = (0)

1f J = N then ™ = (0)

= T
= T = (0), a contradictions
Thus J # Ne

= 0,

> S(ab) = (0)
a-b € T(5) J
= a-b € Je
Next for J e Jy S £ S nel we have
qtributiVe)
s(-n+j+n) _sn +83 7 sn, (s is di
(SJ _ o for JE r(si)
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= 0, for all s € S.

= s (-n+J+n)= (0)

= (n+j+n Y £ r(S) = J.

Thus J is a normal subgroup of N.

If n € N, & E J then for s € S

s(an) = (sa)n = 0, for all & ¢ 8

"‘—-‘? aner(S)=J-

J is a right ideal of N.

Thus,
roper right ideal of N. //

Therefore, J is aPp

5, o Zs grogosition s M N J is aproper ideal of M.
M and J is a normal subgroup of

Since each of

ErOOf

so 15 also M N Je

(Ny+) s
ubgroup of M.

gives that J N M is a normal 8

and J NM cM
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E( z_l Si)(.‘.[lp) S( E..' sj) Py (m e M, s € S)
/ ’ i

s54(x4p) ss,(x#p) + oo = (I xsS5) D

1]
i+

eee — (T + 858 B :
L i)P, as ssix = 0 for X ¢ r(M)

n
I+
n
n
p
o)
+
0
n
N
o
|

0, for all s € S.
) =J

= m (xtp) - mp € r(S

And clearly, m(x+p) — MP € M

(x+p) — MP € J N M.
n ideal of M.

= m

ThusJﬂMisa

If pOSSible, let J N M= M.

—
=

Then (J N e = (oM M) g Mg = (0)

> M= (0)
= M= (0) (N—strongly prime), & contradiction.
Hence J nMc M
Thus J N M is a proper ideal of M. V4
5.,b4.5. pefinition 3 A near-ring N is called (1eft) cancella-
__J,.,\Lg,ifforx,y,a(;éo) e N, ax=ay==>x=y.
We have number of examples of near-ring N where X,y € N,
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/ ey
5.4.4, Example (F(7), Page 340, [42])s N = {0
) = {0,1,2,3,4} is

a ar- i m nlic
near ring under addltion modulo 5 and ultinli o
4 S ation defi
ned by

the following table.

oo r 2 0 4
0 0 0 0 0 o
1 0 1 4 1 4
2 0 2 3 2 3
3 0 3 2 3 2
A 0 L 1 4 1

Table $ 5420

+ for non-zero 2 € N, 2.1 =23 =2 but 1 4#
3.

re we see tha
oaceN and X #y for x,y € N such that

He
So, there exists a non-zer

In othe

ax = aye rwards, N 18 not (left) cancellative. /
Now we extend the definition of a near-domain due to Graves

[28] to a quasi near'—domain.

g is a _n_gar-—domain [due to

ons $ A near‘-r‘il'l

5.1}050 P-_e__f_‘_j_;r.l—é"t"}'—‘_

araves) il

(i) for X,y,2 & N, a £ 0
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(i) for x,y € N, xy = 0 ( x f 0)
= y=0

(ii) for any X,y € N, (x #0#y)

XN N yN =& (0) .

near-domain is a quasi near-domain

Clearly &

ax=0=93.x=a,0=>x=o)

(for a # 0, x € Ns
In otherwords, S is a right M-subset

In what followE, SME Se

of M.

cnn———

The near-ring M/ (Jn M)(.-:-'ﬁ) is such

5,4.60 proposition !
= .3

that for M,n sM,Tﬁ‘ns-C—) (7 A 0) glves 1 =

%‘: _ M
proof 3 Since’r'n;éo,m;fJ(asme ,m£JNM)
—“-‘#

= sm # (0)

- S(mn) = (0), since mn e J =r(S).

and SM = S)

Now, (Sm)n
(as Jg is maximal

= N € r(Sm) = r(s) =Y

= nsJﬂM

> 75=0.171
5.4.7 _J:_e_@.gl_g_zLetfors,qu,Jﬂ(sN+qN)~(o)
| a sN N aN (0).
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Then ther 15t
re exists s, € S ( g M) such that
10t sqaN N s,8N = (0)

and SisN, S,_LqN c sl

Proof 8 First we prove that sNM # (0)

For, s NM = (0)

_ N c 101) = (0), (bY 5 s Lad )

s e 1) = (0); (by 5.1.1)

= s = 0, nbt true

> sl £ (0)-

Let snm (#0) € oNil where n € N, m € M then
gx & sNM where x = Hn e M.
= SX E SM ¢ ©
Let sj_:sx(ss)
Here we note that sq5N # (0).
For, 817N = (0)
= sN € r(sg) =Y ( =r(5))
_.-_-,»sNg(sN-qu) nJg= (0
> 5 € 1(N) = (0)
> 8 = 0, not true.

Thus 515”/' (0)
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3]
o

Moreover,

(xsN) ¢ sil.

|
m
[ Y
n
=
=
Il
—
m
b
-
m
==
Il
n

and sin =

Therefore, $;aN, sysN ¢ sl

Nexl we prove that sin N 515N = (0)

Suppose, S39X = 5,8y € sin N slsN, (x,y € N)

= Si(sy - gx) =0, Sp € S
- g8y = QgX € r(sq) =9
Now, Sy — dX = sy+q(-x) € sN + gy, (g € 8)
— S8y — QX € Jn (sN + ql) = (0)
_s 8y = QX E i n an = (0)
= 5,4X = Sp5Y = 0
sy = (0) )

e S such that sN N agN = (0)

5,480 Lemna
for q € Se
B
Then (qu+a) 0 Bg Al
+a € (N * A) N B where @ e A, D EDB,
- gx 2
proof * Let o= ¢
ﬂ-ﬂ

X € No
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Sy’ b = SZ, for y’z e N.

Then a =
= gx = s(z-y) e av D sN = (0)

b =acehlB.

Thus, (ail + A) N B g ANB. /

et J N (sN + gN) = (0), s,q € S such

(for s # 0/ d)-

e S ( EM) such that {qN, Squ, Sﬂ_SN}

-

5,4,9, Lemma :

that sN N gN = (0)

Then there exists 871
y of right N-subgroups of N with s,aN,

is an independent famil
s8N € sN.
By 5e4e7s there exists S & s ( ¢ M) such that

proof 3
sN.

s14 N N 5,88 = (0) and 55N, s,0N <
So, (sin + sisN) n gNc (sN ¥ sN) N agN
c sN N qN = (0)

=

= (sin—-}" slsN) n aN = (0) -
‘ s, gN ( by 5.4.8.
NeXT,
0)
= (aN ¥ 51’ ) n spaN (
)y N sisN c san n sysN (as above)
ol
qN + 51
AlSO, ( . o.
+ SaQN) n Sﬂ—
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Th . ,
us {agN, squ, slsN} is an independent family of right

N-subgroups of N. V4

5.4.10, Theorem ¢ Let Nbea strongly prime weakly right

Goldie near-ring such that sN N qN.= (0) for non=zero

S’qes (E]\'I).

Then J N (aN + sK) # (0).

proof ¢ Suppose, J n (gN + sN) = (0).

Then by 5,4,9 there exists s4 €5 such that {quSg_qN,SlsN}

& family with s7QN sqSN ¢ sN.

is an independe!

g N (sqaN * sisN) cJ N (sN+ sN)

c:JﬂSNC_;Jﬂ(SN-;qN):(o)

s, € S there exists

[y

5, Ny s,8,5N} 18 an independent

s
5. esgch cuch that {sqN» 52
2 &
s.8N C sN.
family with ﬂé,sin, szs,_LsN c Sy
N} is an independent family,
v 1aim tha {qN Sg'qNa Sgs;lq } ,
We C
s o = (0)
Here Siq ’
N) D 5251QN c § gN N 85N (by 5.4.8.)
+ Saq
- (N
) n stin = (O)
- (v ? 510"
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And (yN + s.S
554aN) N spaN ¢ spspaN N sy gN - ( by 5.4.8)

n

(0)

Also &
, (59GN + 858,0N) N oN ¢ (sN + sN) N oN

c sN N gN = (0)

Thus {4gN, Sp9N, s,5,QN} is an independent family.

In like manner, Wwe pet an independent family of nmght
viz. {a,N, SqaN, S,8,aN, S35,8,4 N, oo} which

N-subgroups of N,
And this contradicts the weakly right

is an infénite family.
Goldie character of N.

70 (aN +sN) £ (0) ./

Therefore,
5.4,11. ZIheorem ! Let N be a strongly prime weakly right
coldie near-ring.

Then nénpfis a quasi near—danahL

proof ¢ BY 5,4,6, for Ms
mn 6:’-—? ’IT:‘O-.
= ;=% we show that

then there exists

for some X,y E N
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If cM = (
= (0) then c
2} e 1(M) =
(M) = (0), by 5.1.2, =
.2, a contradicti
ctlon,

So cM # (
Q) whict i
hich gives an element p
e M1 such t
h that c
p#£O

Now, cp = SXp = 4yP
=>.—-—--‘—" — T3
SXp=4yp =C°p
S Xp = qyp ="

And, Tp = 0 =

= T =0, (for s # 0) (by 5.4.6.)

= xp edJ NHM

- xp e J =7r(S).

- Sxp = (0)

_ sxp = 0, for all s € S

- cp = 0, not true.

Theretore 7 # 0. In othervords,

)-’ci'(y'ﬁ)féa

5 (%) =
rhus, 8 M agM A ) s 5D, TP =
(1) Supp0ose s N gN = (0) for /9 € o e s
Then bPY 5.’4.10, g n (av* sN) A (0).
Hence there exists © 7 g + 5y (€ 4 0) for some X,y € N
J : 9
C E J'
N befor™”
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So there exists a w g M such that cw A0

cw = (QK+5Y)W = (XW + SYyW

Then,

Since c € J, cw € J (as J 18 a right ideal by 5.4.1.) and

cw e M (as M is a left ideal).

= c¢cw e J nm

- C W -0
= (qx +5y) ¥ = 0
s Gx WYV -0
=>‘ S %w =75 (V) (as § distributive)
o, T D T O T
=> W:’é (:for'é_;é'(')”)-
1hese #1Ve us xw, yw € Je
= xXW, YW e r(5)e
—5 qxw, SYW 7 o for d, 5 ¢ s( c M)
= CW & qxw + SYWF 0, conl:radlction.
o E( ) O
rhus 4 X
‘-’ﬁﬂ?ﬁ% (0)
50, ¢ o
Let any}EFfﬁi ¢ M. Thell
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m=£i'§i(sigs)

and my = ) i—‘?i (f]i £ )

-— -—

Ther- fore, m W = 2 YT o B
T ra, moH (Z_l;l)r1£,,i;q

ol ﬁ(L‘” = (I qi) Mo aiM, for s;,q; € S.

And by what we have proved above, we pat

SN ogyn # (0)

— ——

So, m 1M Nmy T2

‘r'i Mo oqy It A (0) which pives,

Ny TA(0)e

a qunti nenr=donain,  //

Hence M/ (5 AM) is
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