3 (Sem-2) CHM M1

2022

CHEMISTRY

(Major)

Paper: 2·1

(Physical Chemistry)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions in brief: 1×7=7
 - (a) How does the mean free path define the ideal behaviour of H_2 gas at room temperature?

(b)	Write	down	the	cell	reaction	for	the
	cell —	•					

$$Pt(s)|H_{2}(g)|H^{+}(aq)|Cl^{-}(aq)|Hg_{2}Cl_{2}(s)|Hg(l)$$

- (c) Define thermotropic and lyotropic liquids.
- (d) Explain whether and aqueous solution of K_2SO_4 can be regarded as ideal or not.
- (e) What are the advantages of reference electrodes?
- (f) Two van der Waals gases have the same value of 'b' but one of them has a greater value of 'a'. Which of the two gases would occupy greater volume under identical conditions?
- (g) Define refractive index.
- 2. Answer the following questions: $2\times4=8$
 - (a) Find the collision flux of O_2 at a temperature of 300 K and a pressure of 1 bar.

- (b) Explain the origin of colligative properties. 2
- (c) Gas A obeys the equation $PV_m = \frac{RT}{\left(1 + \frac{b}{V_m}\right)}$ and gas B obeys $P\left(V_m b\right) = RT$. Would it be possible to liquify either A or B? Justify your answer.
- (d) Write a short note on fuel cells. 2
- 3. Answer the following questions: (any three) 5×3=15
 - (a) Show that for a very low concentration of a substance B

 $\pi V = [B] RT$, where all symbols have their usual meaning.

(b) What is the importance of the principle of corresponding states? The equation of state of a certain gas is given by

$$P = \frac{RT}{V_m} + \frac{(a+bT)}{V_m^2}$$
, where a and b are constants. Find $\left(\frac{\partial V}{\partial T}\right)_P$. 2+3=5

(c) Define a buffer solution. Deduce the Henderson-Hasselbalch equation for both acidic and basic buffers.

1+2+2=5

- (d) Discuss the Stalagmometric method for the determination of surface tension of a liquid. What is the SI unit of surface tension?

 4+1=5
- (e) Find a relation between the cell potential and the reaction Gibbs free energy. Calculate the ionic strength and mean activity coefficient of a 1.00 m mol kg⁻¹ CaCl₂(aq) solution at 25°C.
- 4. (a) Answer either (i), (ii) and (iii) or (iv):
 - (i) For a van der Waals gas the value of P_c is $1.01 \times 10^7 Pa$ and that of the van der Waals constant 'b' is $5.0 \times 10^{-5} \ m^3 \ mol^{-1}$. Calculate its critical temperature.

- (ii) Calculate the values of C_p and C_v for CO_2 and H_2O molecules. $1\frac{1}{2}+1\frac{1}{2}=3$
- (iii) Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode.
- (iv) What is viscosity of a fluid? Discuss how exactly it arises in liquids and gases. Derive an expression for the coefficient of viscosity of a gas in terms of mean free path. Discuss the effect of temperature and pressure on viscosity of a gas and compare these with those of liquids.

1+2+4+3=10

- (b) Answer either (i) and (ii) or (iii) and (iv):
 - (i) Derive the Stokes-Einstein equation. The molar ionic conductance at infinite dilution of silver ions is $61.92 \times 10^{-4} \ Sm^2 \ mol^{-1}$ at $25^{\circ}C$. Calculate the ionic mobility of silver ions at $25^{\circ}C$ at infinite dilution. 3+2=5

- (ii) Using the concept of chemical potential show that the relative lowering of vapour pressure of a solution containing a non-volatile, non-electrolyte solute is equal to the mole fraction of the solute.
- (iii) Discuss briefly about the structure of liquid crystals.
- (iv) Using the postulates of kinetic theory of gases, deduce an expression for the pressure of the gas.
- (c) Answer (i) or (ii) and (iii) or (iv):
- of molecular speeds? Explain what information can be obtained from speed distribution curves.

 Using a graphical representation discuss the effect of temperature on the distribution of molecular speeds.

 2+2+2=6

- (ii) What is a concentration cell? Taking the example of a hydrogen electrode, explain how concentration cells are classified. Explain the types of cells in which the liquid junction potential is maximum. 1+3+2=6
- (iii) Explain briefly, how the equilibrium constant of a reaction can be calculated from the measurement of standard electrode potential.

4

(iv) Calculate the single electrode potential at 298 K for a Zn half cell electrode dipped in a 0.01M $ZnSO_4$ solution. Given that

$$E_{Zn^{2+}/Zn}^{\circ} = -0.763V$$
 4