3 (Sem-2) CHM M 1

2018

CHEMISTRY

(Major)

Paper : 2.1

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) State True or False:"Gases can be liquefied by applying pressure at any temperature."
 - (b) Find the critical volume of helium gas $(b = 0.01927 \text{ dm}^3 \text{ mol}^{-1}).$
 - (c) If c₀ is the speed of light in vacuum and c is the speed of light in a medium, then what will be the expression for refractive index of the medium?

- (d) Choose the correct answer:

 At the same temperature, 0.01M solution of urea is isotonic with
 - (i) 0.01 M NaCl solution
 - (ii) 0.01M MgCl₂ solution
 - (iii) 0.01M glucose solution
 - (iv) 0.01M sodium acetate solution
 - (e) Choose the correct answer:

 If ΔT_b is the elevation in boiling point for an electrolytic solution and ΔT_b° is elevation of the boiling point for a non-electrolyte solution of the same concentration in the same solvent, then the van't Hoff factor is given by
 - (i) $\Delta T_b \times \Delta T_b^{\circ}$
 - (ii) $\Delta T_b^{\circ} / \Delta T_b$
 - (iii) $\frac{\Delta T_b \Delta T_b^{\circ}}{2}$
 - (iv) $\Delta T_b / \Delta T_b^{\circ}$
 - (f) Define molar conductivity of an electrolytic solution.
 - (g) Give the condition for maximum buffer capacity of a buffer solution.

2.	Answer	the	following	questions	:	2×4=8
----	--------	-----	-----------	-----------	---	-------

- (a) For a monatomic ideal gas, show that the molar heat capacity at constant volume is 12.471 JK⁻¹ mol⁻¹.
- (b) A liquid P has half the surface tension of liquid Q. Again the density of liquid P is twice the density of liquid Q. If in a capillary tube P rises to 10.0 cm, what will be the rise of liquid Q in the same capillary tube when inserted identically at the same temperature?
- (c) Define ideal solutions. Give the values of ΔV and $\Delta_{mix} H$ for an ideal solution.
 - (d) What are concentration cells? Give one suitable example of concentration cell with transference.
- 3. Answer the following questions (any three): 5×3=15

) (i) Give the postulates of kinetic

- (a) (i) Give the postulates of kinetic molecular theory of gases.
 - (ii) Give the limitations of van der Waals equation of state. 2

3

molecule? Calculate the various degrees	
2+3:	=5
(i) CO ₂	
(ii) H ₂ O	
(i) Give the principle of the stalagmo- meter method of determination of surface tension of a liquid.	3
(ii) The numbers of drops of water and an organic liquid in drop number method from a stalagmometer are 100 and 200 respectively. Calculate the surface tension of the organic liquid at 298 K. Given that at 298 K, the surface tension of water is 7.28×10^{-3} N m ⁻¹ , density of water is 1.0 kg dm ⁻³ and density of the organic liquid is 0.9 kg dm ⁻³ .	2
(i) What is limiting molar conductivity? State the Kohlrausch law of the independent migration of ions.	2
(ii) The limiting molar conductances of Al ³⁺ and SO ₄ ²⁻ are 189 S cm ² mol ⁻¹ and 160 S cm ² mol ⁻¹ respectively. Calculate the limiting molar conductance of Al ₂ (SO ₄) ₃ .	3
	molecule? Calculate the various degrees of freedom of the following molecules: 2+3: (i) CO ₂ (ii) H ₂ O (i) Give the principle of the stalagmometer method of determination of surface tension of a liquid. (ii) The numbers of drops of water and an organic liquid in drop number method from a stalagmometer are 100 and 200 respectively. Calculate the surface tension of the organic liquid at 298 K. Given that at 298 K, the surface tension of water is $7 \cdot 28 \times 10^{-3}$ N m ⁻¹ , density of water is $1 \cdot 0$ kg dm ⁻³ and density of the organic liquid is $0 \cdot 9$ kg dm ⁻³ . (i) What is limiting molar conductivity? State the Kohlrausch law of the independent migration of ions. (ii) The limiting molar conductances of A1 ³⁺ and SO ₄ ²⁻ are 189 S cm ² mol ⁻¹ and 160 S cm ² mol ⁻¹ respectively.

(e)	(i) Define degree of dissociation of a weak electrolyte.	1
	(ii) State Ostwald's dilution law. Explain the law with the help of a suitable example.	4
4. (a)	Answer either [(i) and (ii)] or [(iii) and (iv)]:	
	(i) Derive the equation of corresponding states. Justify why this equation can be considered as a generalized equation of state for a gas.	5
	(ii) Derive an expression for osmotic pressure of a dilute solution from thermodynamic consideration.	5
	(iii) What are transport properties of gas? Using kinetic theory, derive an expression for self-diffusion coefficient of a gas.	5
	(iv) Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode.	5
(b)	Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)] :	
	(i) Define the terms collision cross- section and mean free path.	3
8A/ 738	(Turn Over	-)

(ii) What are liquid crystals? Mention

,	the uses of fiquid crystals.	4
	A solution, composed of 0.05 <i>M</i> of an organic acid and 0.5 <i>M</i> of its sodium salt, gives a pH of 5.5 at 298 K. Calculate the dissociation constant of the acid.	3
(iv)	Explain the terms activity and activity coefficient.	2
(v)	Discuss briefly about the structure of liquid crystals.	4
(vi)	What is ionic strength of an electrolytic solution? Calculate the ionic strength of 0.01 mol kg^{-1} H_2SO_4 solution.	3=4
Ans	wer either [(i) and (ii)] or [(iii) and (iv)]:	
(i)	What is buffer capacity of a buffer solution? Explain the term buffer action with the help of a suitable example.	1=5
(ü)	Define electrode potential. Calculate the single electrode potential at 298 K of a half-cell for zinc electrode dipped in 0.01M ZnSO ₄ solution. Given	

 $E_{\operatorname{Zn}^{2+}|\operatorname{Zn}}^{\circ} = -0.763 \text{ volt}$

(c)

1+4=5

- (iii) What are fuel cells? Write the electrode reactions of hydrogen-oxygen fuel cell. Calculate the standard e.m.f. of hydrogen-oxygen fuel cell. Mention one use of fuel cell.

 1+2+2+1=6
- (iv) Explain briefly how equilibrium constant can be calculated from the measurement of standard electrode potential.

3 (Sem-2) CHM M 2

2018

CHEMISTRY

(Major)

Paper: 2.2

(Organic Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer any seven questions:

 $1 \times 7 = 7$

- (a) Explain, why β -keto acids like RCOCH₂CO₂H readily decarboxylate on heating.
- (b) Indicate which reagent is expected to be more nucleophilic toward CH₃Br in ethanol and why:

$$p$$
-NO₂C₆H₄O $^-$ or p -CH₃C₆H₄O $^-$

(c) Predict the major product:

$$///$$
 + HBr $\xrightarrow{-80 \text{ °C}}$?

(d) How would the pK_a values of ammonium ions change if they were determined in a solvent less polar than water?

(Turn Over)

(e) Arrange the following classes of compounds in decreasing order of boiling point considering that they have same number of carbon atoms:

Carboxylic acids, Amides, Ketones, Nitriles

- (f) Semicarbazide has two NH₂ groups, but only one of them forms an imine. Explain.
- (g) Which tautomeric form of 2,4-pentanedione is more stable in—
 - (i) water;
 - (ii) hexane?
- (h) The reaction of an alkene with Br₂ does not require a Lewis acid but the reaction of benzene does. Why?
- 2. Answer any four questions:

2×4=8

- (a) With the help of an example, bring out the difference between a chiral centre and a stereogenic centre.
- (b) Ketones do not undergo Knoevenagel reaction with malonic acid or its esters. Why?
- (c) What products would you expect from the following reactions? 1×2=2

(i)
$$+$$
 NBS $\xrightarrow{\text{peroxide}}$?

(ii)
$$O^- + \bigcup_{NO_2}^{N_2^+} \longrightarrow ?$$

- (d) Account for the fact that acetals are stable to bases but are readily hydrolyzed by acids.
- (e) How would you employ organometallic reagents to make the following compounds?
 - (i) OH
 - (ii) Ph
- 3. Answer any two from (a), (b) and (c) and any one from (d) and (e): 5×3=15
 - (a) Compare the relative stabilities of chair, boat and twist-boat conformations of cyclohexane.
 - (b) (i) Indicate whether the underlined atoms or groups are homotopic, enantiotopic or diastereotopic:

(Turn Over)

2

5

2

8A/**739**

(ii) Using 2,3,4-trihydroxyglutaric acid,

	stereogenic, chirotopic and achirotopic carbons.	
(c)	(i) Which conformer is favoured in ethylene glycol and why? 1½	(
	(ii) Which conformer is favoured in 1,2-dibromoethane and why? 1½	
	(iii) Butane has chiral conformers, yet it is optically inactive. Explain. 2	
(d)	Provide evidences for aromatic electrophilic substitutions involving—	
	(i) π-complex;	
	(ü) σ-complex.	
	Draw the energy profile diagram for both the mechanisms. 4+1	
. (e)	(i) What do you mean by partial rate factor? How is it calculated? 1+1=2	
	(ii) The chlorination of toluene by using chlorine in aqueous acetic acid takes place 344 times faster than does the same reaction of benzene. The product ratio is 59.9% ortho-, 0.3% meta- and 39.8% parachlorotoluene. Calculate the partial	
	rate factors for the reaction. 3	
8A /739	(Continued)	

- **4.** Answer either (a) or (b) and any two from (c), (d), (e) and (f): 10×3=30
 - (a) (i) Write the product obtained for the reaction given below and propose a mechanism for the same: 1+3=4

$$+ (CH_3)_2C = CH_2 \xrightarrow{BF_3/HF} ?$$

- (ii) Nitration of N,N-dimethyl aniline gives mainly the m-nitro derivative when concentrated nitric and sulphuric acids are used but mainly the o- and p-nitro derivatives in less acidic conditions. Why?
- (iii) Indicate the position(s) of major monoelectrophilic substitution of each of the following compounds and account for the same:

$$\bigcap_{\text{Cl}}^{\text{NO}_2}$$
 \bigcap_{NO_2}

(iv) When nitrations of aromatic substrates are carried out, nitronium ion is said to act as an electrophile. Provide two evidences in support of formation of the nitronium ion.

(Turn Over)

2

2

2

- (b) (i) What happens when methyl picrate is allowed to react with potassium ethoxide? Propose a mechanism for the reaction and justify with evidences. 1+2+1=4
 - (ii) Account for the observation that nucleophilic substitution of chlorobenzene takes place through a benzyne mechanism whereas nucleophilic substitution of chloronitrobenzenes proceeds via the addition-elimination sequence.
 - (iii) Why is S_N1 mechanism common to diazonium compounds? Provide evidence in support of the reversible nature of the first step of the mechanism
 - (c) (i) Why is propene more reactive towards electrophilic addition than ethene? Explain.
 - (ii) Propose a mechanism for the formation of meso-1,2-dibromostilbene by the addition of bromine to 2-stilbene in nitromethane.
 - (iii) What is decarboxylation? What product(s) is/are formed by the decraboxylation of 2-methyl-butanoic acid?

8A/739

(Continued)

3

3

3

2

		How can the compound HOCH ₂ CH ₂ NH ₂ be prepared, starting with a carbonyl compound with one fewer carbon atom than the desired product?	2
	(v)	What do you mean by reductive amination?	1
(d)	(i)	How can you convert cyclohexene to trans-1,2-cyclohexane diol? Propose a mechanism for the reaction.	3
	(ii)	Compound $A(C_{10}H_{16})$ takes up 2 mols of hydrogen on catalytic hydrogenation. Ozonolysis gives two diketones, $B(C_6H_{10}O_2)$ and $C(C_4H_6O_2)$. Propose a reasonable structure (or structures) of A .	2
	(iii)	Account for the fact that aliphatic α -chloroamines hydrolyse even more rapidly than the related α -chloroethers.	3
	(iv)	How can you prepare pentan-1-ol from pentene? Write the reaction.	2
(e)	(i)	Although an aryl group is usually found to be electron-withdrawing relative to alkyl, aromatic aldehydes tend to be less reactive than aliphatic aldehydes. Explain.	2
739		(Turn Ove	er)

(ii) Predict the major product and propose a mechanism for the reaction given below:

 $\begin{array}{c}
O \\
+ C_6H_5CHO \xrightarrow{\text{NaOH/H}_2O}
\end{array} ?$

3

2

3

2

2

(iii) Using the Hell-Volhard-Zelinsky reaction, propose a synthetic route for the preparation of alanine.

(iv) Give a chemical method to distinguish three isomeric amines having the molecular formula C₃H₉N.

- (f) (i) Propose a mechanism for the benzoin condensation reaction.

 What role does cyanide ion play in this reaction?

 3+1=4
 - (ii) Grignard reagents fail to form addition compounds with olefins. Why?
 - (iii) Distinguish between phenol and benzyl alcohol using chemical methods.
 - (iv) Diazonium salts can be used to prepare heterocyclic compounds. What happens when o-phenylenediamine is diazotized? Write the reaction.

* * *