. Sem – 5) MAT M 1

2021

ed 10 (Held in 2022)

MATHEMATICS

(Major)

Paper: 5.1

(Real and Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Define limit of a function of two variables.
 - (b) Evaluate:

$$\lim_{(x, y)\to(0, 0)} \frac{x^2y^2}{x^2y^2 + (x^2 - y^2)^2}$$

- (c) Give an example of a function which is not continuous but Riemann integrable.
- (d) When is an improper integral said to be convergent?
- (e) Find the fixed points of the transformation $w = \frac{2z+3}{z-4}$, z is a complex number.
- (f) Let C_1 and C_2 be two simple closed curves, then $\oint_{C_1} z dz = \oint_{C_2} z dz$.

(State true **or** false)

- (g) Verify whether the transformation $w = z^3$ is conformal or not at all points of the region |z| < 1.
- 2. Answer the following questions: 2×4=8
 - (a) Show that the following function is discontinuous at the origin:

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

(b) Show that a constant function k is integrable and

$$\int_{a}^{b} k dx = k (b - a)$$

(c) Test the convergence of

$$\int_{0}^{\pi/2} \frac{\sin x}{x^{p}} dx$$

- (d) Evaluate: $\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$
- 3. Answer any three parts:

5×3=15

- (a) Show that f(xy, z-2x)=0 satisfies, under suitable conditions, the equation $x\frac{\partial z}{\partial x}-y\frac{\partial z}{\partial y}=2x$. What are these conditions?
- (b) Show that $\int_{1}^{2} f dx = \frac{11}{2}$, where f(x) = 3x + 1.

(c) Show that the integral

$$\int_{0}^{\pi/2} \frac{\sin^{m} x}{x^{n}} dx$$

exits, iff n < m + 1.

(d) Prove that the real and imaginary parts of an analytic function of a complex variable when expressed in polar form satisfy the equation

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = 0$$

(e) Evaluate:

$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
, where C is the circle $|z| = 3$.

4. Answer any three parts:

10×3=30

(a) (i) Show that the function f, where

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{, if } x^2 + y^2 \neq 0\\ 0 & \text{, if } x = y = 0 \end{cases}$$

is continuous, possesses partial derivative, but is not differentiable at the origin.

(ii) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$

is continuous at the origin. 4

- (b) (i) Prove that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2}$ is invariant for change of rectangular axes. 6
 - (ii) Expand $x^2y+3y-2$ in powers of x-1 and y+2.
 - (c) (i) If $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, then find the maximum value of xyz.
 - (ii) Prove that the improper integral $\int_{a}^{b} f dx$ converges if and only if to every $\varepsilon > 0$, there corresponds $\delta > 0$ such that

$$\left| \int_{a+\lambda_1}^{a+\lambda_2} f dx \right| < \varepsilon, \quad 0 < \lambda_1, \lambda_2 < \delta. \quad 5$$

Contd.

- (d) (i) The oscillation of a bounded function f on an interval [a, b] is the supremum of the sit $\{|f(x_1)-f(x_2)|: x_1, x_2 \in [a, b]\}$ of numbers.
 - (ii) Show that the function [x], where [x] denotes the greatest integer not greater than x, is integrable in

[0,3] and
$$\int_{0}^{3} [x] dx = 3$$
.

- (e) Prove that $u = e^{-x}(x \sin y y \cos y)$ is harmonic. Hence find v such that f(z) = u + iv is analytic. 4+6=10
- (f) (i) Evaluate:

$$\oint_C \frac{z^2}{(z-1)(z-2)} dz$$

and

$$\oint_C \frac{e^{2z}}{(z+1)^4} dz$$
, where C is the circle $|z| = 3$.

(ii) Determine the region of the w plane into which each of the following is mapped by the transformation

$$w = z^2$$
: 2+3=5

- (A) First quadrant of the z-plane
- (B) Region bounded by x = 1, y = 1and x + y = 1

d set of any

yino bas li asao 3 (Sem-5) MAT M2

OA = A (I)

A ± A

2021 (Held in 2022)

MATHEMATICS

(rojom) se the correct one)

Paper: 5.2

(d) Define a complete metric space. (d) (d) (d)

Les (X 60 X) self-les repological

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1\times7=7$
 - (a) Describe the closed sphere S[-1, 1] for the usual metric on \mathbb{R} .
 - (b) Find the closure of the set $A = \left\{1, \frac{1}{2}, \frac{1}{3},\right\}$ in the real line \mathbb{R} with the usual metric.

(a) What do you mean by a Banach space?

- (c) A subset of a metric space (X, d) is open if and only if
 - (i) $A = A^0$
 - (ii) $A \neq A^0$
 - (iii) $A = \overline{A}$
 - (iv) $A \neq \overline{A}$ (Choose the correct one)
 - (d) Define a complete metric space.
 - (e) Let (X, I) be an indiscrete topological space. What is the derived set of any subset A of X?
- (f) Consider the topological space (X, T) where $X = \{a, b, c, d\}$ and $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$.

 A mapping $f: X \to X$ is defined as f(a) = b, f(b) = d, f(c) = b, f(d) = e.

 State whether f is continuous at c or not?
 - (g) What do you mean by a Banach space?

- 2. Answer the following questions: 2×4=8
 - (a) Show that every subset of a discrete metric space is closed.
 - (b) Prove that every convergent sequence in a metric space is a Cauchy sequence.
 - (c) Let X be a set and $T = \{\phi, A, B, X\}$ where A and B are non-empty distinct proper subsets of X. Find what conditions A and B must satisfy in order that T may be a topology for X.
 - (d) Prove that every normed linear space is a metric space.
- 3. Answer the following questions: 5×3=15
 - (a) (i) Let (X, d) be a metric space and $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X.$

Prove that d' is a metric on X.

3

2×4=8	(ii)	Is intersection of an arbitrary
		family of open sets is open in any
liscrete) B	metric space? Justify it. 2

(b) (i) Let $X = \{a, b, c, d, e\}$ and $A = \{\{a, b, c\}, \{c, d\}, \{d, e\}\}.$ Find the topology on X generated by A.

(ii) Let $f: X \to Y$ be a function from a non-empty set X into a topological space (Y, U). If $T = \left\{ f^{-1}(G) \middle| G \in U \right\}$, then show that T is a topology on X.

Answer the following questions: 5×3=15

Prove that in a topological space (X, T), if $A \subseteq X$, then $\overline{A} = A \cup D(A)$.

(c) Show that \mathbb{R}^n is a normed linear space with some suitable norm.

Let $(X, <\cdot>)$ be an inner product space. Prove that for all $x, y \in X$,

$$4 < x, y > = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2$$

- 4. Answer the following questions: 10×3=30
 - (a) (i) Let (X, d) be a metric space. Prove that a subset F of X is closed if and only if its complement F^C in X5 is open.
 - (ii) Let (X, d) be a metric space and $Y \subset X$. Show that a subset A of Y is open in (Y, dy) if and only if there exists a set G open in (X, d)such that $A = G \cap Y$.

dense subset or into Y, then prove

Let (X, d) be a metric space and $\langle F_n \rangle$ be a nested sequence of non-empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$. Prove that X is complete if

that a non-empor subset of E (with and only if $\bigcap F_n$ consists of exactly n=1 if it is an interval. Of =Q+1 one point. 10

Let (X, d_1) and (Y, d_2) be two metric (b) (i) spaces. Prove that the mapping odyjet space. $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y. 6

(ii) If (X, d_1) and (Y, d_2) be two metric 08=8×01 spaces, then prove that the every energy mapping $f: X \to y$ is continuous

if baselo at X log and only if $f(\overline{A}) \subseteq \overline{f(A)}$, 4 every subset A of X.

or that a subset A of Y

Let (X, d_1) be a metric space and (Y, d_2) be a complete metric space. If f is a uniformly continuous mapping from a dense subset of X into Y, then prove that f can be extended uniquely to a uniformly continuous mapping 10 $g:X\to Y$.

(c) Define a connected metric space. Prove that a non-empty subset of \mathbb{R} (with usual metric) is connected if and only 1+9=10if it is an interval.

Prove that a subset A of the real line \mathbb{R} is compact if and only if it is closed and bounded.

3 (Sem-5) MAT M3

2021 (Held in 2022)

MATHEMATICS

(Major)

Paper: 5.3

(Spherical Trigonometry and Astronomy)

no nomenter Full Marks: 60 append

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (i) Write the condition under which one may have an infinite number of great circles through two given points.
 - (ii) Define polar triangle and its primitive.
- [1] (iii) State the third law of Kepler.
- (iv) What do you mean by circumpolar star?

- (v) Define primary circle.
- (vi) What is parallactic ellipse?
- (vii) What is the declination of the pole of the ecliptic?
- 2. Answer the following questions: 2×4=8
 - pole at any place is equal to the latitude of that place.
 - (b) Discuss the effect of refraction on sunrise.
 - (c) Prove that section of a sphere by a plane is a circle.
 - (d) Show that right ascension α and declination δ of the sun is always connected by the equation

 $\tan \delta = \tan \varepsilon \sin \alpha$ ε being obliquity of the ecliptic.

- 3. Answer **any three** questions of the following: 5×3=15
 - (a) Deduce Kepler's laws from Newton's law of gravitation.

(b) If H be the hour angle of a star of declination δ when its azimuth is A and H' when the azimuth is (180° + A), show that

$$\tan \phi = \frac{\cos \frac{1}{2} (H' + H)}{\cos \frac{1}{2} (H' - H)}$$

- (c) In an equilateral spherical triangle ABC, prove that $2\cos\frac{a}{2}\sin\frac{A}{2}=1$.
 - (d) Define geocentric parallax. Show that geocentric parallax of a heavenly body varies as the sine of its apparent zenith distance.
 - (e) If ψ is the angle which a star makes at rising with the horizon, prove that $\cos \psi = \sin \phi \sec \delta$, where the symbols have their usual meanings.
- 4. Answer *any three* questions of the following: 10×3=30
 - (a) In a spherical triangle, prove that cosacosC = sinacotb sinCcotB. Also, in a spherical triangle if $b+c=\pi$, prove that sin2B + sin2C = 0.

(b) If the colatitude is C, prove that

$$C = x + \cos^{-1}(\cos x \sec y)$$

where $tan x = cot \delta cos H$, $sin y = cos \delta sin H$ H being the hour angle.

(c) If ψ is the angle at the centre of the sun subtended by the line joining two planets at distance a and b from the sun at stationary points, show that

Define
$$\frac{\sqrt{ab}}{a+b-\sqrt{ab}} = \psi \cos x$$
. Show that

- (d) Define astronomical refraction and state the laws of refraction. Derive the formula for refraction as $R = k \tan \xi$, ξ being the apparent zenith distance of a heavenly body.
- (e) What is solar eclipse? Mention different types of solar eclipse. Also discuss (with neat diagram) the commencement of solar eclipse.
- Discuss the effects of annual parallax on celestial longitude and latitude.

that sin 2 B sin 2 C

3 (Sem-5) MAT M 4

(Held in 2022)

Whod bar a mathematics

(Major)

Paper: 5.4

(Rigid Dynamics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions:

 $1 \times 7 = 7$

- (i) What is the moment of inertia of a circular disc of mass M and radius a about a diameter?
- (ii) State the perpendicular axes theorem on moments of inertia.

- (iii) Define radius of gyration of the rigid body about a line.
- (iv) Define the centre of percussion.
- (v) Define the principal axes of a rigid body at a point O of the body.
- (vi) A particle moves on the surface of a sphere. What is the degree of freedom of the particle?
- (vii) What do you mean by a conservative mechanical system?
- 2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Prove the perpendicular axes theorem.
- (b) A rigid body consists of 3 particles of masses 3 units, 5 units and 2 units located at the points (-1, 0, 1),

- (2, -1, 3) and (-2, 2, 1) respectively.

 Find the moments of inertia about

 (i) the y-axis, and (ii) the z-axis.
- (c) A rigid body of mass 2 units rotates with angular velocity $\vec{\omega} = (1, 1, -1)$ and has the angular momentum $\vec{\Omega} = (2, 3, -1)$. Find the kinetic energy of the body.
- (d) A particle of mass 3 units is located at the point (2, 0, 0). The particle rotates about O with angular velocity $\vec{\omega} = \hat{k}$. Find the angular momentum of the particle about O.
- 3. Answer the following questions:

5×3=15

(a) Find the moment of inertia of a hollow sphere of radius a and mass M about a diameter.

If the moments and products of inertia of a body about three perpendicular concurrent axes are known, find the moment of inertia of the body about

the line
$$\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$$
.

(b) State D'Alembert's principle and use it to obtain the equations of motion of any rigid body.

Or

A rough uniform board of mass m and length 2a rests on a smooth horizontal plane and a man of mass M walks on it from one end to the other. Show that the distance through which the board

moves in this time is $\frac{2Ma}{M+m}$.

(c) An elliptical lamina is such that when it swings about one latus rectum as a horizontal axis, the other latus rectum passes through the centre of oscillation,

prove that the eccentricity is $\frac{1}{2}$.

Obtain the Lagrangian for a simple pendulum and hence derive the equations of motion of the body.

4. Answer any three: 10×3=30

(a) Show that the moment of inertia of a right solid cone, whose height is h and the radius of whose base is a, is

$$\frac{3Ma^2}{20} \frac{6h^2 + a^2}{h^2 + a^2}$$
 about a slant side, and

 $\frac{3M}{90} (h^2 + 4a^2)$ about a line through the centre of gravity of the perpendicular to its axis.

(b) With usual notation, prove the formula $\frac{1}{2}M(V^2+k^2\omega^2)$ for the K.E. of a lamina moving in its plane.

(c) Define impressed forces and effective forces. A uniform rod OA of length 2a, free to turn about its end O revolves with uniform angular velocity ω about the vertical OZ through O and is inclined at a constant angle α to OZ. Show that the value of α is either zero

or
$$\cos^{-1}\left(\frac{3g}{4a\omega^2}\right)$$
.

(d) Two equal uniform rods AB and AC, are freely hinged at A and rest in a straight line on a smooth table. A blow is struck at B perpendicular to the rods; show that the kinetic energy generated

is $\frac{7}{4}$ times what it would be if the rods were rigidly fastened together at A.

(e) A uniform rod is held in a vertical position with one end resting upon a perfectly rough table, and when released rotates about the end in contact with the table. Find the motion.

(f) Derive the equations of motion of a rigid body in two dimensions when the forces acting on the body are finite. total manufacture of tossing three coins at a Sem =5) MAT M 5

2021

9 0 = (Y,X)vo (Held in 2022)

Laimenid Tol MATHEMATICS CONTROL

(Major)

Paper: 5.5

(Probability) 167

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×8=8
 - (a) Define probability density function for a continuous random variable.
- (b) What conclusion can be made about the conditional probability P(A|B) if P(B)=0?
 - (c) State the multiplication theorem of expectation.

- (d) Write the sample space for the experiment of tossing three coins at a time.
 - Under what condition Cov(X, Y) = 0? (e)
 - Choose the correct option for binomial (f) distribution
 - variance = mean (i)
 - (ii) variance > mean
 - (iii) variance < mean
 - (g) If the mean, median and mode of a continuous distribution coincide, name the distribution.
- (h) For a Bernoulli random variable X with P(X=0)=1-p and P(X=1)=p, write E(X) and V(X) in terms of p.
- Answer the following questions: $3\times4=12$

the Whiseconglusion can be stude about the

(a) If X and Y are two random variables, show that mylogen that work

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

(b) Find k, such that the function f defined

What is the probability th

$$f(x) = \begin{cases} kx^2 & \text{, when } 0 < x < 1 \\ 0 & \text{, otherwise} \end{cases}$$
 is a probability density function. Also determine $P(\frac{1}{3} < x < \frac{1}{2})$.

- (c) Show that in a frequency distribution (x_i, f_i) ; i = 1, 2,, n mathematical expectation of the random variable is nothing but its arithmetic mean.
 - (d) Define Poisson distribution and hence prove that $\sum_{r=0}^{\infty} p(r) = 1$.
- 3. Answer any two of the following: 5×2=10
 - (a) If A and B are independent events, then show that \overline{A} and \overline{B} are also independent events.

- how many of these are white. Two balls are drawn and are found to be white. What is the probability that all are white?
- (c) A coin is tossed until a head appears.

 What is the expectation of the number of heads required?
- 4. Answer **any two** of the following: 5×2=10
 - (a) The probability density function of a two-dimensional random variable (X, Y) is given by

$$f(x+y) = x+y, 0 < x+y < 1$$

= 0, elsewhere

Evaluate
$$P(X < \frac{1}{2}, Y > \frac{1}{4})$$

(b) X is a discrete random variable having the following probability mass function:

Mass points
$$x : 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7$$

 $P(X = x) : 0 \mid k \mid 2k \mid 2k \mid 3k \mid k^2 \mid 2k^2 \mid 7k^2 + k \mid$

- To note (i) Determine the constant k.
- bas 4 (ii) Find P(X < 6).
 - (iii) What will be $P(X \ge 6)$?
 - (c) A random variable has the following probability distribution:

 $f(x) = 2e^{-2x}, x \ge 0$

p(x): 0.1 0.3 0.4 0.2 and p(x): 0.1 0.3 0.4 0.2 and

Find (i) E(X), and (ii) Var(X).

- 5. Answer **any two** of the following: $5\times2=10$
 - (a) If X be a Poisson distributed random variable with the parameter μ , then prove that $E(X) = \mu$ and $V(X) = \mu$
 - (b) Prove that the mean and variance of a binomially distributed random variable are respectively $\mu = np$ and $\sigma^2 = npq$ (where the symbols have their usual meanings).

- (c) Write the probability density function of a random variable X which follows normal distribution with mean μ and variance σ^2 . What is standard normal variate? Find its mean and variance.
- 6. Answer any two of the following: 5×2=10
 - (a) A random variable X has the density function given by

$$f(x) = 2e^{-2x}$$
, $x \ge 0$

Answer any two of the following bniTx2=10

- mobal (i) the moment generating function;
 - (ii) the first four moments about the origin.
 - (b) Find the moment generating function of a continuous probability distribution,

whose density is $\frac{1}{2}x^2e^{-x}$, $0 < x < \infty$ and deduce the values of mean and variance.

- State and prove Bayes' theorem. (c)
- Let the events $A_1, A_2,, A_k$ (d) independent and $P(A_i) = p_i$. Show that the probability that at least one of these events will occur is $1 - \prod_{i=1}^{k} (1 - p_i)$.

O Who o profess all to the live of the The second second second second

Significant the property of the state of the

whose density is a week to cake a und

3 (Sem-5) MAT M 6

2021

(Held in 2022)

SUCCESTANT MATHEMATICS GOVED

ealdsiney plead to (Major)

Paper: 5.6

(Optimization Theory)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following as directed:

egoritos n (n) 1×7=7

(a) The set of all feasible solutions of an LPP is a ———— set.

(Fill in the blank)

Contd.

- (b) The set of simultaneous equations $x_1+2x_2=8$, $3x_1+x_2=9$, $x_1+x_2=4$ is
 - (i) consistent
 - (ii) inconsistent
 - (iii) None of the above (Choose the correct option)
- (c) Given a system of m simultaneous linear equations in n unknowns (m < n), the number of basic variables will be
 - (i) m
 - (ii) (n'osh) nobosimilao)
 - (iii) n-m
 - (iv) n+m

(Choose the correct option)

- (d) A simplex in *n*-dimension is a convex polyhedron having
 - (i) n-1 vertices
- (ii) n vertices
- (iii) n+1 vertices
 - (iv) None of the above (Choose the correct option)

- (e) At any iteration of the usual simplex method, if there is at least one basic variable in the basis at zero level and all $z_i c_i \ge 0$, the current solution is
 - (i) infeasible
 - (ii) unbounded
 - (iii) non-degenerate
 - (iv) degenerate
- (z_j, c_j having usual meaning)

 (Choose the correct option)
 - (f) If the jth primal variable x_j is unrestricted in sign, then the dual problem, the jth constraint is an

(Fill in the blank)

(g) In a balanced transportation problem with m sources and n destinations, the number of constraint equations are

(Fill in the blank)

- 2. Answer the following questions: 2×4=8
 - (a) Let S and T be two convex sets in \mathbb{R}^n . Then for any scalars α , $\beta \in \mathbb{R}$, $\alpha S + \beta T$ is also convex in \mathbb{R}^n .

Contd.

(b) Prove that $x_1=2$, $x_2=-1$ and $x_3=0$ is a solution but not a basic solution to the system of equations

$$3x_1 - 2x_2 + x_3 = 8$$
$$9x_1 - 6x_2 + 4x_3 = 24$$

(c) Write the dual of the following primal problem:

Minimize
$$Z=3x_1+5x_2$$

subject to $3x_1+5x_2=12$
 $4x_1+2x_2=10$
with $x_1, x_2 \ge 0$

number of constraint equations are

(d) Find the extreme points of the convex polygon defined by the inequalities

$$2x_{1} + x_{2} + 9 \ge 0$$

$$-x_{1} + 3x_{2} + 6 \ge 0$$

$$x_{1} + 2x_{2} - 3 \le 0$$

$$x_{1} + x_{2} \le 0$$

- 3. Answer **any three** parts of the following: 5×3=15
 - (a) Solve graphically the following LPP: Maximize $Z = 5x_1 + 7x_2$ subject to $x_1 + x_2 \le 4$

$$x_{1} + x_{2} \le 4$$

$$3x_{1} + 8x_{2} \le 24$$

$$10x_{1} + 7x_{2} \le 35$$

$$x_{1}, x_{2} \ge 0$$

- (b) Prove that the set of all convex combinations of finite number of points of $S \subset \mathbb{R}^n$ is a convex set.
- (c) Find all the basic solutions of the equations

$$2x_1 + 3x_2 + x_3 = 8$$
$$x_1 + 2x_2 + 2x_3 = 5$$

and prove that one set of solution is not feasible.

(d) Prove that any convex combination of K different optimum solutions to an LPP

Max
$$Z = CX$$
, C , $X^T \in \mathbb{R}^n$ subject to $AX = b$

$$X \ge 0$$

is again an optimum solution to the LPP.

(e) Write the dual of the following primal problem and solve :

Min
$$Z = x_1 + 2x_2$$

subject to

$$2x_1 + x_2 \ge 4$$

 $x_1 + 7x_2 \ge 7$
with $x_1, x_2 \ge 0$

Solve the following LPP by simplex method: 4.

10 Maximize $Z = 3x_1 + 2x_2 + 5x_3$ subject to

$$x_1 + 2x_2 + x_3 \le 430$$

only
$$3x_1 + 2x_3 \le 460$$
 only the bridge

$$x_1 + 4x_2 \le 420$$

with
$$x_1, x_2, x_3 \ge 0$$

one set of solution is

Use the two-phase simplex method to solve

Max
$$Z = 5x_1 - 4x_2 + 3x_3$$

subject to the constraints

$$2x_1 + x_2 - 6x_3 = 20$$
$$6x_1 + 5x_2 + 10x_3 \le 76$$

$$8x_1 - 3x_2 + 6x_3 \le 50$$

with
$$x_1, x_2, x_3 \ge 0$$

10

5. Use duality to solve the following: 10 Minimize $Z = 3x_1 + x_2$ subject to

$$2x_1 + 3x_2 \ge 2$$

 $x_1 + x_2 \ge 1$
with $x_1, x_2 \ge 0$

If \hat{x} is any feasible solution to the primal Minimize $Z_p = \overline{c}\overline{x}$ subject to Find a solution $\overline{b} \cong \overline{b}$

$$A\overline{x} \ge \overline{b}$$
 $\overline{x} \ge 0$

and \hat{w} is any feasible solution to the dual

the total cost

Maximize $Z_D = \overline{b}'\overline{w}$ subject to

$$A'\overline{w} \le \overline{c}'$$

$$\overline{w} \ge 0$$

then show that, $\overline{c}\overline{x} \ge \overline{b}'\overline{w}$

6. Solve the following assignment problem:

		Projects			
		A	В	C	D
	1	12	10	10	8
Engineer	2	14	Not suitable	15	11
Diigineer	3	6	10	16	4
	4	8	10	9	7
o the prime	i no	urlo	leasible s	VILE	ei X. H

Or

Find a solution of the following transportation problem which will minimize the total cost:

$O \downarrow D \rightarrow$	D_1	D_2	D_3	D_4	Available a_i
O_1	1	2	1	21410) 30 Sunju
O_2	3	3	2	1	50
O_3	4	2	5	9	20
Requirement b_j	20	40	30	10	then