3 (Sem-1/CBCS) STA HC 1

2021 (Held in 2022)

STATISTICS

(Honours)

Paper: STA-HC-1016

(Descriptive Statistics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) The column headings of a statistical table are known as
 - (i) sub-titles
 - (ii) stubs

- (iii) reference notes
- (iv) captions

(Choose the correct option)

(b) If 5 is subtracted from each observation of a set, then the arithmetic mean of the new set of observations is reduced by ______.

(Fill in the blank)

(c) The best measure of dispersion for comparison of two different series is coefficient of variation.

(State True **or** False)

- (d) With usual notations, if for two attributes A and B, $(AB) > \frac{(A)(B)}{N}$, the attributes are
 - (i) independent
 - (ii) positively associated
 - (iii) negatively associated
 - (iv) None of the above
 (Choose the correct option)

- (e) Laspeyres price index number uses the quantities as weights.

 (Fill in the blank)
- (f) If X and Y are independent, the value of regression coefficient β_{YX} is equal to
- Ineralli (i) to Inouquesos auiden evid (a)
 - components of a statistical ∞ (ii) ∞
 - imusa (iii) O ontrio notta vob prebusta
 - (iv) None of the above correct option)
 - (g) The partial correlation coefficient lies between $-\infty$ and $+\infty$.

(State True or False)

- 2. Answer the following questions: $2\times4=8$
 - (a) State two limitations of statistics.
 - (b) For a distribution, mean is 10 and variance is 16. Find the first two moments about origin.
 - (c) Prove that Paasche's index number does not satisfy the time reversal test.

- (d) "The regression coefficient of X on Y is 3.2 and that of Y on X is 0.8." Is this statement correct? Give reasons in support of your answer.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) Give a brief description of different components of a statistical table. 5
 - (b) What is standard deviation? Find standard deviation of the first n natural numbers. 1+4=5
 - (c) Define multiple and partial correlation coefficient. If $r_{12} = 0.85$, $r_{13} = 0.65$ and $r_{23} = 0.72$; find $R_{1.23}$. (Notations having usual meaning.) 2+3=5
 - (d) Suppose P_{01}^{La} , P_{01}^{Pa} and P_{01}^{ME} denote Laspeyres, Paasche and Marshall-Edgeworth price index numbers respectively. If $P_{01}^{La} < P_{01}^{Pa}$, then prove that

$$P_{01}^{La} < P_{01}^{ME} < P_{01}^{Pa}$$

5

(e)	Obtain the normal equations for fitting of the 2 nd degree parabola
	$y = a + bx + cx^2$ on the basis of <i>n</i> pairs
	$(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ of values of
	(X,Y).

- 4. Answer either (a) or (b): 10
 - (a) (i) Distinguish between attributes and variables.
 - (ii) Discuss the construction of cost of living index number by family budget enquiry.
 - (iii) Prove that correlation coefficient lies between -1 and +1. Give the geometrical interpretation of the case when r = +1. 4+1=5
 - (b) (i) Write a brief note on consistency of data with special reference to attributes.
 - (ii) Write a note on selection of base period in construction of index number.
 - (iii) Prove that regression coefficients are independent of charge of origin but not of scale.

5. Allswer either (a) or (b).				
	(a)	(i)	Write briefly on control experiments. 2	
10		(ii)	Find the arithmetic mean of the AP series a , $a+d$, $a+2d$,, $a+2nd$.	
	e kol	(iii)	Elaborate on the uses of cost of living index number. 5	
2	(b)	(i)	coefficient measure?	
VIII			Define mode and derive its formula. 1+5=6	
) 1	State the properties of multiple correlation coefficient.	
6.	Ansv	ver e	either (a) or (b):	
	(a)	(i)	State the values of β_1 and β_2 for a symmetric distribution.	
		(ii)	Write a brief note on box plot. 3	
	inue lac-lea	(iii)	Derive the formula for Spearman's rank correlation coefficient in case of non-repeated ranks.	
	(b)	(i)	Define chain-based index number.	

- (ii) What is skewness? State various measures of skewness. 1+2=3
- (iii) With usual notations, prove that

$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$

3 (Sem-1 /CBCS) STA HC 2

mero 2021 indied aim? (b)

(Held in 2022)

STATISTICS TO STATISTICS

(Honours)

eord to ne Paper: STA-HC-1026

(Calculus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following as directed:

 $1 \times 10 = 10$

- (a) Define differential coefficient of f(x)at the point x = a.
- Choose the correct option) (b) The value of $\lim_{x\to 0} \frac{\tan x}{x}$ is
 - (ii) If f(x,y) = 2x xy + 2y = 0 in(i) find
 - (ii) 1
 - (iii) anieg out to the bug I
 - (iv) None of the above (Choose the correct option) Contd.

(c) Evaluate
$$\Gamma\left(-\frac{3}{2}\right)$$
.

(d) State Leibnitz's theorem.

(e) Show that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$

(SEOR of BISH)

- (f) Find the differential equation of lines parallel to x-axis.
- (g) The integral $\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ converges if

(i)
$$m>0$$
, $n>0$

(ii)
$$m < 0, n > 0$$

(iii)
$$m>-1$$
, $n>-1$

(Choose the correct option)

(h) If
$$f(x,y) = 2x^2 - xy + 2y^2$$
, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (1,2).

(i) The differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 - 2\left(\frac{dy}{dx}\right)^2 + 5y = 0 \quad \text{is}$$

- (i) an ordinary differential equation
- (ii) of order two and degree two
- (iii) called partial differential equation (Choose the incorrect option)
 - (i) Find the value of

$$\lim_{x \to a} \frac{x^4}{e^x}$$

- in Show that it a tunction is differentiable 2. Answer the following questions: 2×5=10
 - (a) Examine the differentiability at x=0of the function f defined on the set of real number as follows:

$$f(x)=x^2\sin\frac{1}{x}, \text{ if } x\neq 0$$

$$= 0, \text{ if } x=0$$

- (b) Evaluate $\lim_{x\to 0} (\sin x \log x)$
- Show that $f(x) = x^3 6x^2 + 24x + 1$ has (c) neither a maximum nor a minimum.

(d) Obtain a differential equation from the relation

$$y = A \sin x + B \cos x + x \sin x$$

(e) Show that for
$$l > 0$$
, $m > 0$

$$\int_{a}^{b} (x-a)^{l-1} (b-x)^{m-1} dx = (b-a)^{l+m-1} \beta(l,m)$$

- 3. Answer **any four** from the following questions: 5×4=20
 - (a) Show that if a function is differentiable at a point, then it is continuous at that point but the converse is not necessarily true.
 - (b) Show that the necessary and sufficient condition for the differential equation Mdx+Ndy=0 to be be exact is

(b) Evaluate

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

(c) Evaluate
$$\int_{1}^{\log 8} \int_{e^{x+y}}^{\log y} dy dx$$

- If (a,b) be a point of the domain of (d) definition of a function f such that
 - (i) f_x is continuous at (a,b)
 - f_y exists at (a,b), then show f is (ii) differentiable at (a,b).

(b) Solve the differential equation

(e) If $u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$, then using Euler's theorem show that

ii) Evaluate lin (cosx);

world
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$$
 and

- (f) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
- (a) (i) If $y = \sin^{-1} x$, then using Leibnitz's theorem prove that

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-n^2y_n=0$$

2

(ii) Test the continuity and differentiability of the function

$$f(x) = \begin{cases} 1+x & \text{if } x \le 2\\ 5-x & \text{if } x \ge 2 \end{cases}$$

$$\text{at } x=2$$

(b) Solve the differential equation

$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$

5. (a) (i) For a positive number P, show that

$$\Gamma(P)\Gamma\left(P+\frac{1}{2}\right)2^{2P-1} = \sqrt{\pi} \Gamma(2P) \qquad 6$$

(ii) Evaluate
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$
 4

Land story more or standard

(b) (i) Evaluate
$$\int_{0}^{\pi/2} \log \sin x \, dx$$
 5

(ii) If
$$u = 2(ax + by)^2 - (x^2 + y^2)$$
 and $a^2 + b^2 = 1$, find the value of
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$
 5

Show that the function 6. (a) (i) $u = x^3 + y^3 - 3ay$ has a maximum or minimum at the point (a, a) according as a is negative or positive. 5

(ii) If
$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
;
 $(x,y) \neq (0,0), \ f(0,0) = 0$, then show that at the origin $f_{xy} \neq f_{yx}$.

 $q(x) = [(f(x,y)dy \text{ for } x \in [a,b]]$ (i) Solve the differential equation:

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = \sin x$$

Define Clairaut's equation. (ii) Explain the general solution of Clairaut's equation. 5

7. (a) (i) If
$$u^3 + v^3 = x + y$$
,
$$u^2 + v^2 = x^3 + y^3$$
, prove that
$$\frac{\partial(u, v)}{\partial(x, y)} = \frac{y^2 - x^2}{2\mu v(y - v)}$$

(ii) Solve the partial differential equation :

5

0

5

(a.b.) inled set
$$\left(\frac{y^2z}{x}\right)P + xzq = y^2$$

- (b) If f is defined and continuous on the rectangle R=[a,b;c,d], and if
- (i) $f_x(x, y)$ exists and is continuous on the rectangle R, and
 - (ii) $g(x) = \int_{c}^{d} f(\bar{x}, y) dy$ for $x \in [a, b]$ then show that g is differentiable

on
$$[a,b]$$
 and $g'(x) = \int_{c}^{d} f_{x}(x,y)dy$

Claireur's equation.

10

Explain the general solution of