3 (Sem-4/CBCS) PHY HC1

2022

PHYSICS

(Honours)

Paper: PHY-HC-4016

(Mathematical Physics-III)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer any seven questions of the following: 1×7=7
 - (a) What is the argument of -3i?
 - (b) Express $f(z) = z^2$ in the form of u(x, y) + iv(x, y).
 - (c) What is singular point of an analytic function?

- (d) Evaluate $\delta_q^p A_s^{qr}$.
- (e) State the shifting property of Fourier transform (FT).
- (f) Find the residue of the complex function $f(z) = \frac{1}{z^2 + 1}$ at the pole z = i.
- (g) Show that $L(1) = \frac{1}{s}$, s > 0.
- (h) What is rank of a tensor? Give one example of a zero rank tensor.
- (i) Define Fourier inverse transform.
- (j) Write the polar form of a complex number.
- 2. Answer **any four** of the following questions: 2×4=8
 - (a) Check whether the function log z is analytic or not.
 - (b) Plot the complex number $e^{(1-\pi/6i)}$ in Argand diagram.

- (c) Prove that the contraction of the tensor A_m^l is invariant.
- (d) Obtain the Fourier transform of the function

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (e) Using the property of Levi-Civita symbol prove that $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$.
- (f) If $L[f(x)] = \overline{f}(s)$, then show that $L[e^{ax} f(x)] = \overline{f}(s-a).$
- (g) Evaluate the integral $\oint \frac{dz}{z}$ around a unit circle.
- (h) Expand the function

$$f(z) = \frac{1}{z+1}$$
, about $z = 1$ in Taylor series up to two terms.

- 3. Answer any three questions of the following: 5×3=15
 - (i) Find the value of the integral $\int_{0}^{1+i} (x-y-ix^2) dz$, along real axis from z=0 to z=1 and then along the line parallel to imaginary axis from z=1 to z=1+i.
 - (ii) State and prove Cauchy's integral formula.
 - (iii) Obtain the Fourier sine and cosine transform of the function

$$f(x) = \begin{cases} 1, & 0 < x < \pi/2 \\ 0, & x > \pi/2 \end{cases}$$

- (iv) What is Kronecker delta? Show that it is a mixed tensor of rank 2. 2+3=5
- (v) Find the Laplace transform of the function $f(t) = \sin at$.
- (vi) Show that $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ and $Arg(z_1 \cdot z_2) = Arg(z_1) + Arg(z_2)$.

- (vii) What are raising and lowering of indices of a tensor? Prove that the raising and lowering operation of indices are reciprocal to each other. 2+3=5
- (viii) Evaluate $\oint_C \frac{\cos z}{z} dz$, where C is an ellipse given by $9x^2 + 4y^2 = 1$, using Cauchy's integral formula.
- 4. Answer **any three** of the following questions: 10×3=30
 - (a) (i) Show that if f(z) = u + iv is an analytic function and $\vec{F} = \hat{i}v + \hat{j}u$ is a vector, then $div\vec{F} = 0$ and $curl\vec{F} = 0$ are equivalent to Cauchy-Reimann equations.
 - (ii) State and prove quotient law of tensors.
 - (b) (i) The Laplace transform of sin3t is $\frac{3}{S^2+9}$ and the Laplace transform of cos5t is $\frac{S}{S^2+25}$. Find the Laplace transform of 5sin3t+3cos5t using linearity property of Laplace transform.

- (ii) Find the inverse Laplace transform of $\frac{4S+5}{(S-1)^2(S+2)}$.
- (c) (i) If A_{λ} is a covariant tensor of rank 1, show that $\frac{\partial A_{\lambda}}{\partial x_{\mu}}$ is not a tensor.

S Answer any three of the Johnning

- (ii) Prove the following identities: 2+2+3=7
- (a) $\delta_{ii} = 3$
- (b) $\delta_{ik}\varepsilon_{ikm} = 0$
 - (c) $\varepsilon_{iks}\varepsilon_{mps} = \delta_{im}\delta_{kp} \delta_{ip}\delta_{km} = 0$
- (d) State and prove Fourier integral theorem.
- (e) (i) Using the method of residues, show that $\int_{0}^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi\sqrt{2}}{4}.$ 6
 - (ii) Express the complex number 1+2i/1-3i in $r(\cos\theta+i\sin\theta)$ form.

- (f) Evaluate **any two** of the following integrals by contour integration:

 5×2=10
 - (i) $\int_{0}^{\infty} \frac{dx}{x^2 + 1}$
 - (ii) $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$
 - (iii) $\int_{-\infty}^{+\infty} \frac{e^{ax}}{1+e^x} dx$
- (g) Solve the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ under the conditions that, y(x, 0) = 0, y'(x, 0) = 0, x > 0 and y(0, t) = t, $\lim_{x \to \infty} y(x, t) = 0$, $t \ge 0$.
- (h) (i) What is residue of a complex function? State and prove Cauchy's residue theorem.

1+1+4=6

(ii) Show that any contravariant or covariant tensor of the second order can be resolved into symmetric and antisymmetric parts.

3 (Sem-4/CBCS) PHY HC2

2022

PHYSICS

(Honours)

Paper: PHY-HC-4026

(Elements of Modern Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any seven questions of the following:

 1×7=7
 - (a) What is the rest mass of photon?
 - (b) Define work function in the phenomenon of photoelectric effect.

- (c) What is confirmed by Davisson and Germer experiment?
- (d) What is wave particle duality?
- (e) What is quantum dot?
- (f) The volume of 80^{16} nucleus is V. What is the volume of $_{29}Cu^{64}$ nucleus?
- (g) Write the relation between half life and mean life.
- (h) At what energy range, gamma photon shows the Compton effect?
- (i) What is the main source of solar energy?
- (i) What is pumping in LASER technology?
- 2. Answer any four of the following: 2×4=8
 - (a) What is virtual particle?

- (b) Explain eigenfunction and eigenvalues of an operator.
 - (c) Show that nuclear density is independent of the mass number.
 - (d) Write two properties of nuclear force.
 - (e) If the half life of a radioactive substance is 15 seconds, calculate its decay constant.
 - (f) Calculate the energy released from the fission of $10gm\ U^{235}$. [Energy per fission is 200MeV]
 - (g) Write two properties of LASER.
 - (h) Write two necessary conditions for nuclear fusion reaction.
- 3. Answer any three questions of the following: 5×3=15
 - (a) Derive the one-dimensional time dependent Schrödinger equation for a moving free particle.

- (b) Find the expression of momentum operator.
- (c) Discuss the magic number in the context of nuclear shell model.
- (d) State the law of radioactivity and derive it mathematically. 2+3=5
- (e) Explain the fine structure of α decay.
- (f) Write a short note on pair production process.
- (g) What is nuclear fission reactor?

 Describe the main parts of a nuclear reactor.

 1+4=5
- (h) Explain the following:
 - (i) Spontaneous emission
 - (ii) Stimulated emission
 - (iii) Metastable states

- 4. Answer **any three** question of the following: 10×3=30
 - (a) What is Compton scattering? Explain the experimental arrangement of Compton scattering. Derive the expression of Compton shift.

1+3+6=10

- (b) State Heisenberg uncertainty principle.

 Derive this principle from wave packets.

 2+8=10
- (c) A particle of mass m is confined in a one-dimensional infinitely rigid box of length L. The potential function is given by

$$V(x) = \alpha, \quad x \le 0$$

$$= 0, \quad 0 < x < L$$

$$= \alpha, \quad x \ge L$$

5

- (i) Find the wave function of the particle inside the box.
- (ii) Find the expression of energy eigenvalues.

6+4=10

- (d) Derive the expression of transmission coefficient and reflection coefficient, when a particle of mass m, kinetic energy E is incident on a one-dimensional potential barrier, if the kinetic energy is greater than the potential of the barrier. 5+5=10
- (e) Derive the expression of semi-empirical mass formula and explain each term involved in this expression. 6+4=10
 - spectrum. What are the difficulties in interpreting this continuous spectrum?

 How did Pauli resolve these difficulties?

 3+4+3=10
- (g) Explain the construction and different operating regions of a gas-filled detector 3+7=10

(h) Describe the construction and working of Ruby LASER. Mention two applications of Ruby LASER.

(4+4)+2=10

3 (Sem-4/CBCS) PHY HC3

101 beautiful 2022 Holdbooks (in

PHYSICS

(Honours)

Paper: PHY-HC-4036

(Analog Systems and Applications)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any seven questions from the following: 1×7=7
 - (i) Resistivity of a semiconductor _____ with increase in temperature.

 (Fill in the blank)
 - (ii) Potential barrier across a p-n junction diode is due to accumulation of
- (a) electrons
 - (b) opposite ions
 - (c) space charges
 - (d) holes (Choose the correct option)

- (iii) Class-C amplifier produces the least efficiency but exhibits good linearity. (Write True or False)
- (iv) RC-coupled amplifier is used for
 - (a) current amplification
 - (b) power amplification
 - (c) voltage amplification
 - (d) None of the above (Choose the correct option)
- (v) In a transistor amplifier, lower value of the stability factor indicates the better stability of the quiescent point. (Write True or False)
- (vi) Bandwidth of an amplifier increases by employing
 - (a) positive feedback
 - (b) all types of negative feedback
 - (c) current-series positive feedback
 - (d) voltage-series negative feedback (Choose the correct option)
- (vii) In an op-amp the input stage is usually a _____ amplifier.

 (Fill in the blank)

- (viii) If a sine wave is applied to the input of an op-amp differentiator circuit, the output would be a
 - (a) cosine wave
 - (b) triangular wave
 - (c) square wave
 - (d) pulse (Choose the correct option)
- (ix) Wien bridge oscillator is an audio frequency sine wave oscillator of high ______. (Fill in the blank)
- (x) Resolution of a DAC is equal to the weight of
 - (a) LSB and agree and the cool beautiful and a second seco
 - (b) MSB
 - (c) 1V
 - (d) 15V (Choose the correct option)
- 2. Answer any four questions: 2×4=8
 - (i) What is ripple factor? What is the value of ripple factor of a half-wave rectifier?

3

- (ii) The current amplification factor of a transistor in common emitter configuration is $\beta = 30$. Calculate collector current I_C and emitter current I_E if the base current is $I_B = 10 \ \mu A$.
- (iii) What is positive feedback? Why is positive feedback most commonly used in oscillator?
- (iv) Define CMRR of an op-amp. Express it in dB form.
 - (v) In a non-inverting op-amp with $R_1 = 1k\Omega$ and $R_F = 100k\Omega$, find the closed-loop voltage gain of the op-amp.
 - (vi) Draw the circuit diagram of a two-stage RC-coupled transistor CE amplifier.
 - (vii) Write the applications of Hartley and Colpitt oscillators.
- (viii) What are the advantages of R-2R ladder DAC over weighted-resistor DAC?

- 3. Answer any three questions: 5×3=15
 - (i) A full-wave rectifier with an applied voltage of $400 \sin \omega t$ is centre-tapped with a load resistance of $2k\Omega$. If the resistance of the diodes are 100Ω each, determine (a) peak value of current, (b) dc value of output current in the load, and (c) rectification efficiency of the rectifier. 1+2+2=5
 - (ii) What do you mean by class A, class B and class C amplifiers? Why is the efficiency of class B amplifier more than that of class A amplifier? 3+2=5
 - (iii) Derive the expression for the voltage gain of RC-coupled transistor amplifier for mid-frequency range.
 - (iv) Explain how an op-amp can be used as (i) a differentiator, and (ii) an integrator.
 - (v) Find the operating frequency of a Hartley oscillator if $L_1 = 10 \,\mu\text{H}$, mutual inductance between the coils $M = 15 \,\mu\text{H}$, $L_2 = 2mH$ and $C = 10 \,\mu\text{F}$. Find also the hFE value for sustained oscillations.

5

- (vi) Define common-base current amplification factor (α) and common emitter current amplification factor (β). Derive the relation between α and β .

 2+3=5
- (vii) The total linear distortion of an amplifier is reduced from 10% to 2% when 4% negative feedback is applied. Find voltage gain of the amplifier without feedback and with feedback.
- (viii) Write short notes on:
 - (a) Photodiode
 - (b) Light emitting diode
- 4. Answer any three questions: 10×3=30
 - (i) What are drift current and diffusion current in a semiconductor? How are the potential barrier and depletion region formed in a p-n junction? Derive the p-n diode equation for determining the current through the junction.

2+2+6=10

- (ii) Distinguish between Zener diode and ordinary p-n junction diode. Explain the action of Zener diode as voltage regulator with circuit diagram. Draw the V-I characteristic curve of a Zener diode.

 2+6+2=10
- (iii) Draw the h-parameter equivalent circuit of a CE transistor amplifier and derive the expressions for its current gain, voltage gain, input impedance and power gain. 2+2+2+2=10
- (iv) What is transistor biasing? Discuss the fixed bias and self bias methods of transistor biasing. Calculate the stability factor of a fixed bias method. What are the disadvantages of a fixed bias method? 1+(3+3)+2+1=10
- (v) What is negative feedback? Discuss the effect of negative feedback on (a) input impedance, (b) output impedance, (c) non-linear distortion, and (d) noise of an amplifier. 2+(2+2+2)=10
- (vi) Draw the circuit diagram of an RCphase shift oscillator and explain its operation. Find an expression for the frequency of oscillations and the condition of sustained oscillations.

7

(2+2)+(4+2)=10

(vii) What are inverting and non-inverting op-amps? With the help of a circuit diagram describe the inverting op-amp with feedback. Derive the expression for the closed loop voltage gain of this amplifier. What do you mean by virtual ground in this op-amp?

2+3+3+2=10

(viii) With the help of a neat diagram explain the working of weighted registor DAC. What are its advantages and disadvantages? Write any two major applications of D/A converters.

4+(2+2)+2=10

dutied date to the part langed ance,