3 (Sem-3/CBCS) PHY HC 1

2022 PHYSICS

(Honours)

Paper: PHY-HC-3016

(Mathematical Physics-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions: 1×7=7
 - (a) Define the singular point of a second order linear differential equation.
 - (b) If $P_n(x)$ and $Q_n(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation.
 - (c) Give one example where Hermite polynomial is used in physics.

- (d) The function $P_n(1)$ is given as
 - (i) zero
 - (ii) 1
 - (iii) $P_n(-1)$
 - (iv) 1

(Choose the correct option)

- (e) Define trace of a matrix.
- (f) What is the rank of a zero matrix?
- (g) Define self-adjoint matrix.
- (h) What do you mean by eigenvector?
- (i) Which one of the following represents an equation of a vibrating string?

(i)
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

(ii)
$$\frac{\partial y}{\partial t} = c \frac{\partial y}{\partial x}$$

- (iii) None of the above (Choose the correct option)
- (j) Write the Laplace equation spherical polar co-ordinate system.
- (k) Define gamma function.
- (1) State the Dirichlet condition for Fourier series.

- 2. Answer **any four** of the following questions: $2\times4=8$
 - (a) Check whether Frobenius method can be applied or not to the following equation:

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x-5)y = 0$$

- (b) If $\int_{-1}^{+1} P_n(x) dx = 2$, find the value of n.
- (c) If A and B are Hermitian matrices, show that AB + BA is Hermitian whereas AB BA is skew-Hermitian.
- (d) Verify that $(AB)^T = B^T A^T$, where $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$
- (e) Given matrices $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$ show that $\sigma_1 \sigma_2 \sigma_2 \sigma_1 = 2i\sigma_3$.
- (f) Using the property of gamma function evaluate the integral

$$\int_{0}^{\infty} x^{4} e^{-x} dx$$

(g) Write the degree and order of the following partial differential equations:

(i)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(ii)
$$\left(\frac{\partial u}{\partial x}\right)^3 + \frac{\partial u}{\partial t} = 0$$

- (h) Find the value of a_0 of the Fourier series for the function $f(x) = x\cos x$ in the interval $-\pi < x < \pi$.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) (i) Why is the function $(1-2xh+h^2)^{-1/2}$ known as a generating function of Legendre polynomial?
 - (ii) Show that

$$(1-2xh+h^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x)h^n$$

where $P_n(x)$ is the Legendre polynomial.

(b) Evaluate explicitly the Legendre's polynomials $P_2(x)$ and $P_3(x)$.

21/2+21/2=5

(c) Write the recursion formula for gamma function. Prove that

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = 1.772$$

(d) What is diagonalize matrix ?
Diagonalize the following matrix :
1+4=5

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(e) Express the matrix:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0 \end{bmatrix}$$
 as a sum of symmetric and skew-symmetric matrix.

(f) What is adjoint of a matrix? For the

matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ verify the theorem

$$A \cdot (AdjA) = (AdjA) \cdot A = |A| \cdot I$$

where *I* is unit matrix.

1+4=5

- (g) If the solution y(x) of Hermite's differential equation is written as $y(x) = \sum_{r=0}^{\infty} a_r x^{k+r}, \text{ show that the allowed values of } k \text{ are zero and one only.}$
- (h) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$
- 4. Answer **any three** of the following questions: 10×3=30
 - (a) (i) Verify that the matrix $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is orthogonal. 2
 - (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and also find A^{-1} . 5+3=8
 - (b) Obtain the power series solution of the Legendre equation

$$(1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+n(n+1)y=0$$

- (c) (i) Obtain the following orthogonality property of Legendre polynomial: $\int_{-1}^{+1} P_n(x) P_m(x) dx = 0 \text{ for } m \neq n \qquad 6$
 - (ii) Show that $H_0(x) = 1$ and $H_1(x) = 2x$ 2+2=4
- (d) Prove the following recurrence relations: 4+3+3=10

(i)
$$nP_n = (2n-1)xP_{n-1} - (n-1)P_{n-2}$$

(ii)
$$xP'_n - P'_{n-1} = nP_n$$

(iii)
$$2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$$

- (e) What is periodic function? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients? Determine the Fourier coefficients.

 1+1+1+7=10
- (f) (i) Using the method of separation of variables, solve: 6 $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ where } u(x,0) = 6e^{-3x}$

(ii) Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(g) (i) If $H_n(x)$ be the polynomial of Hermite differential equation, prove that

$$\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n \sqrt{\pi \cdot n!}$$
 7

(ii) Prove that the following matrix is unitary:

$$\begin{bmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{bmatrix}$$
 3

(h) Deduce the one dimensional wave equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables.

3 (Sem-3/CBCS) PHY HC 2

2022

PHYSICS

(Honours)

Paper: PHY-HC-3026

(Thermal Physics-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions: $1 \times 7 = 7$
 - (a) What is a cyclic process?
 - (b) Which state of matter has the highest entropy?
 - (c) How does root mean square velocity change with temperature?
 - (d) What is velocity space?

- (e) Name the transport phenomenon present in a gas that involves transfer of energy.
- (f) Write the S.I. unit of Van der Waals' constant 'b'.
- (g) Why does the pressure of a gas in a container wall increase when it is heated?
- (h) Is a 'closed system' an 'isolated system'?
- (i) How does the viscosity of a gas vary with pressure?
- (j) Can Gibbs' free energy be negative?
- (k) What is the origin of Doppler broadening in spectral lines?
- (1) In Brownian motion, how does size of the particle affect the speed of the particle?
- 2. Answer **any four** of the following questions: $2 \times 4 = 8$
 - (a) At what temperature will root mean square velocity of a gas be half its value at 0°C.

- (b) Represent isobaric process in a P-V diagram.
- (c) Evaluate Boyle temperature of a gas if its critical temperature is 5.5K.
- (d) Consider a system at room temperature. Explain about the value of entropy for the following situations:
 - (i) temperature of the system is increased and reached equilibrium state
 - (ii) temperature is decreased to 0K.
- (e) Explain physical significance of zeroth law of thermodynamics.
- (f) How mean free path of a molecule is affected by temperature?
- (g) Why does the area of the Maxwell-Boltzmann velocity distribution curve always remain equal to unity? Explain.
- (h) Why specific heat of a gas at constant pressure is always greater than the specific heat of a gas at constant volume?

- 3. Answer **any three** of the following questions: 5×3=15
 - (a) Find the change in entropy of the universe as a result of the following processes: $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) A copper block of 400gm mass and with thermal capacity (at constant pressure) of 150J/deg at 100°C is placed in a lake at 10°C.
 - (ii) The same block at 10°C is dropped from a height of 100m into the lake.
 - (b) What are the four thermodynamic potentials? How specific heat at constant pressure can be expressed in terms of enthalpy?

 4+1=5
 - (c) Find an expression for coefficient of performance of a refrigerator.
 - (d) Derive $C_P C_V = R$ for perfect gas from Maxwell's thermodynamic relations.
 - (e) Calculate the average speed and most probable speed of 1 mole of hydrogen molecule at 300K. Neglect the mass of electron.

 2½+2½=5
 - (f) Derive an expression for work done during an isothermal process.

- (g) A Carnot engine absorbs 100J of heat from a reservoir at a temperature of the normal boiling point of water and rejects heat to a reservoir at the temperature of triple point of water. Find the heat rejected by the engine and its thermal efficiency. 2½+2½=5
- (h) Show that at the critical temperature, the departure of Van der Waals' gas law from perfect gas law measures 62.5%.
- 4. Answer **any three** of the following questions: 10×3=30
 - (a) State Carnot's theorem. Briefly state the operations of a Carnot cycle by plotting them in (i) P-V diagram and (ii) T-S diagram. Show from T-S diagram that the efficiency of the cycle is $1-\frac{T_2}{T_1}$, being independent of the nature of the working substance, where T_1 and T_2 are the source and sink temperature respectively. 2+3+3+2=10
 - (b) Derive all three TdS equations. Write physical significance of TdS equations. 3+3+3+1=10

- (c) What is Joule-Thomson effect? Derive an expression for Joule-Thomson coefficient. Find the values of Joule-Thomson coefficient for a perfect gas and a real gas. 2+3+2+3=10
- (d) Derive Maxwell-Boltzmann's velocity distribution law.
- (e) What are critical constants of a gas?

 Obtain their values in terms of the constants of Van der Waals' equation.

 Hence deduce the law of corresponding states.

 3+3+4=10
- Openine coefficient of thermal conductivity. Show that coefficient of thermal conductivity $K = \eta C_V$ for an ideal gas, where η is coefficient of viscosity and C_V is specific heat at constant volume.
- (g) Define free path and mean free path. What do you mean by 'collision probability'? Show that the probability of a gas molecule traversing a distance x without collision is $e^{-x/\lambda}$ where λ is the mean free path of the gas molecules. 1+1+2+6=10

- (h) Write short notes on the following: (any two) 5×2=10
 - (i) Unattainability of absolute zero
 - (ii) Adiabatic demagnetization
 - (iii) Andrew's experiment of CO₂ gas
 - (iv) Brownian Motion

- (c) What is Joule-Thomson effect? Derive an expression for Joule-Thomson coefficient. Find the values of Joule-Thomson coefficient for a perfect gas and a real gas. 2+3+2+3=10
- (d) Derive Maxwell-Boltzmann's velocity distribution law.
- (e) What are critical constants of a gas?
 Obtain their values in terms of the constants of Van der Waals' equation.
 Hence deduce the law of corresponding states.
 3+3+4=10
- Obefine coefficient of thermal conductivity. Show that coefficient of thermal conductivity $K = \eta C_V$ for an ideal gas, where η is coefficient of viscosity and C_V is specific heat at constant volume.
- (g) Define free path and mean free path. What do you mean by 'collision probability'? Show that the probability of a gas molecule traversing a distance x without collision is $e^{-x/\lambda}$ where λ is the mean free path of the gas molecules. 1+1+2+6=10

- (h) Write short notes on the following: (any two) 5×2=10
 - (i) Unattainability of absolute zero
 - (ii) Adiabatic demagnetization
 - (iii) Andrew's experiment of CO2 gas
 - (iv) Brownian Motion

3 (Sem-3/CBCS) PHY HC 3

2022

PHYSICS

(Honours)

Paper: PHY-HC-3036

(Digital Systems and Applications)

Full Marks : 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1.	Answer the following questions a	s directed:
	(any seven)	1×7=7

(i)	The deflection sensitivity of a CRO can
	be enhanced by reducing
	. (Fill in the blank)

The intel 8085 microprocessor is a 16 (ii) bits processor.

(State True or False)

- The design of flip-flops are based on
 - Sequential logic
 - Multiplexing (b)
 - Combinational logic
 - Demultiplexing

(Choose the correct option)

- The full form of MDR is _____. (Fill in the blank)
- For the given circuit diagram, the output Y is

AB

- (b)
- (c) $\overline{A} + B$
- (d) $\overline{A.B}$

(Choose the correct option)

- (vi) The storage capacity of each stage in a shift register is bits. (Fill in the blank)
- (vii) Monostable multivibrators can be used as frequency divider by using
 - Sawtooth wave generator (a)
 - Triangular wave generator
 - Sine wave generator
 - Square wave generator (Choose the correct option)
- (viii) What is the full form of VLSI?
- (ix) Mention one advantage of a digital circuit over an analog circuit.
- Write the names of an active component and a passive component in a circuit.
- (xi) Convert the binary number 101.112 into decimal number.
- (xii) Convert the decimal number 54.50 into binary number.

- 2. Answer the following questions in brief: (any four) 2×4=8
 - (i) Convert the following hexadecimal numbers to binary
 - (a) B32
 - (b) AE2·4
 - (ii) Reduce the following Boolean function $A\overline{B} + \overline{AB} + AB + \overline{AB}$
 - (iii) Using 2's complement, perform the subtraction 101.1101 101.0111
 - (iv) What do you mean by D/A converter?

 Name two types of D/A converter.
 - (v) What is synchronous counter? Write two basic applications of counters.
 - (vi) What is Primary memory? What is its function?
 - (vii) Draw the logic symbol of XOR gate and construct the truth table.
 - (viii) Mention two applications of Multiplexers.

- 3. Answer **any three** questions from the following: 5×3=15
 - (i) (a) Convert the following Boolean expression into standard SOP form

$$A + \overline{B} + CA$$

- (b) Show that $(\overline{AC} + B)(\overline{\overline{A} + \overline{C}}) = BAC$
- (ii) Explain how SR flip-flop is obtained from using NAND gates. Draw the truth table.
- (iii) With neat diagram explain the working of a serial-in parallel-out shift register. What is the basic difference between a shift register and a counter?
- (iv) Simplify the Boolean function $F(A, B, C, D) = \sum (0,1,2,4,5,6,8,9,12,13,14)$ with the help of K-maps.
- (v) Write short notes on: (any one)
 - (a) BCD decade counter
 - (b) Astable Multivibrator
 - (c) Clocked D flip-flop
- (vi) Define Opcode and Operand. Write an 8085 Assembly Language Program (ALP) to store data of register C into memory location 2054H. 2+3=5

- (vii) Prove the following equations with the help of truth tables:
 - (a) $\overline{A+B} = \overline{A}.\overline{B}$
 - (b) $\overline{A.B} = \overline{A} + \overline{B}$
- (viii) Using NAND gates only, realize the following gates:
 - (a) AND
 - (b) OR
 - (c) NOT
- 4. Answer **any three** of the following questions: 10×3=30
 - (i) What are decoders and encoders? With the help of a logic diagram and truth table explain. 2+4+4=10
 - (a) 2 to 4 decoder
 - (b) Octal to binary encoder.
 - (ii) What is a full Adder? Draw the block diagram and truth table of a full Adder. Design a full Adder logic circuit by applying Karnaugh map. 1+4+5=10
 - (iii) (a) Draw the K-map to minimize the following expression.

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC}$$

(b) For the given truth table, find the minimized logical expression by the use of K-map and SOP method and draw the equivalent logic circuit: 4+6=10

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	.1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- (iv) With the help of a logic diagram and function table explain 5×2=10
 - (a) 1 to 2 Demultiplexer
 - (b) 2 to 1 Multiplexer.
- (v) Draw the block diagram of a CRO. What is the function of electron gun in a CRO? Explain how the phase difference between two sinusoidal voltages of the same frequency and same amplitude can be determined by using CRO.

3+2+5=10

- (vii) Prove the following equations with the help of truth tables:
 - (a) $\overline{A+B} = \overline{A}.\overline{B}$
 - (b) $\overline{A.B} = \overline{A} + \overline{B}$
- (viii) Using NAND gates only, realize the following gates:
 - (a) AND
 - (b) OR
 - (c) NOT
- 4. Answer **any three** of the following questions: 10×3=30
 - (i) What are decoders and encoders? With the help of a logic diagram and truth table explain. 2+4+4=10
 - (a) 2 to 4 decoder
 - (b) Octal to binary encoder.
 - (ii) What is a full Adder? Draw the block diagram and truth table of a full Adder.Design a full Adder logic circuit by applying Karnaugh map. 1+4+5=10
 - (iii) (a) Draw the K-map to minimize the following expression.

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

(b) For the given truth table, find the minimized logical expression by the use of K-map and SOP method and draw the equivalent logic circuit:

4+6=10

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- (iv) With the help of a logic diagram and function table explain 5×2=10
 - (a) 1 to 2 Demultiplexer
 - (b) 2 to 1 Multiplexer.
- (v) Draw the block diagram of a CRO. What is the function of electron gun in a CRO? Explain how the phase difference between two sinusoidal voltages of the same frequency and same amplitude can be determined by using CRO.

3+2+5=10

(vi) What is a microprocessor? What is the difference between microprocessor and microcomputer? Write the basic features of Intel 8085 microprocessor.

1+1+8=10

- (vii) (a) Give the symbol and truth table of XNOR gate.
 - (b) Realize the NOT gate using transistor.
 - (c) What are preset and clear operations? 3+3+4=10
- (viii) (a) What do you mean by the following terms used in a Microprocessor?

 (i) Buses
 - (ii) Registers
 - (iii) ALU
 - (b) What is a Half Subtractor? Give the symbol and the truth table.

6+4=10