3 (Sem-6/CBCS) MAT HC 1

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-6016

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** questions from the following: 1×7=7
 - (a) If c is any nth root of unity other than unity itself, then value of $1+c+c^2+\cdots+c^{n-1}$ is
 - (i) $2n\pi$
 - (ii) 0
 - (iii) -1
 - (iv) None of the above (Choose the correct answer)

(b) The square roots of 2i is

(i)
$$\pm (1+i)$$

(ii)
$$\pm (1-i)$$

(iii)
$$\pm \frac{1}{\sqrt{2}} \left(1 - i\sqrt{2}\right)$$

- (iv) None of the above (Choose the correct answer)
- (c) A composition of continuous function is
 - (i) discontinuous
 - (ii) itself continuous
 - (iii) pointwise continuous
 - (iv) None of the above (Choose the correct answer)

(d) The value of Log(-ei) is

(i)
$$\frac{\pi}{2}-i$$

(iii)
$$1-\frac{\pi}{2}i$$

(iv) None of the above (Choose the correct answer)

(e) The power expression of cosz is

$$\frac{e^z + e^{-z}}{2}$$

(ii)
$$\frac{e^{iz} + e^{-iz}}{2}$$

(iii)
$$\frac{e^{iz} + e^{-iz}}{2i}$$

- (iv) None of the above (Choose the correct answer)
- (f) The Cauchy-Riemann equation for analytic function f(z) = u + iv is

(i)
$$u_x = v_y$$
, $u_y = -v_x$

(ii)
$$u_x = -v_y$$
, $u_y = v_x$

(iii)
$$u_{xx} + v_{yy} = 0$$

- (iv) None of the above (Choose the correct answer)
- (g) If w(t) = u(t) + iv(t), then $\frac{d}{dt}[w(t)]^2$ is equal to

(i)
$$2\left[u(t)+iv(t)\right]$$

(iii)
$$2w(t)w'(t)$$

(iv) None of the above (Choose the correct answer)

- (h) What is Laplace's equation?
- (i) What is extended complex plane?
- (j) What is Jordan arc?
- 2. Answer **any four** questions from the following: 2×4=8
 - (a) Write principal value of $arg\left(\frac{i}{-1-i}\right)$.
 - (b) If $f(z) = x^2 + y^2 2y + i(2x 2xy)$, where z = x + iy, then write f(z) in terms of z.
 - (c) Use definition to show that $\lim_{z \to z_0} \overline{z} = \overline{z}_0$
 - (d) Find the singular point of

$$f(z) = \frac{z^2 + 3}{(z+1)(z^2 + 5)}$$

(e) If f'(z)=0 everywhere in a domain D, then prove that f(z) must be constant throughout D.

- (f) Evaluate f'(z) from definition, where $f(z) = \frac{1}{z}$
- (g) If $f(z) = \frac{z}{\overline{z}}$, find $\lim_{z \to 0} f(z)$, if it exists.
- (h) Write the function $f(z) = z + \frac{1}{z}(z \neq 0)$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) If z_1 and z_2 are complex numbers, then show that $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2.$
 - (b) Show that exp. $(2\pm 3\pi i) = -e^2$.
 - (c) Sketch the set $|z-2+i| \le 1$ and determine its domain.
 - (d) Let C be the arc of the circle |z|=2from z=2 to z=2i, that lies in the 1st quadrant, then show that

$$\left| \int_C \frac{z-2}{z^2+1} \, dz \right| \le \frac{4\pi}{15}$$

- (e) Evaluate $\int_C \frac{dz}{z}$, where C is the top half of the circle |z|=1 from z=1 to z=-1.
- (f) If $f(z) = e^z$, then show that it is an analytic function.
- (g) If $f(z) = \frac{z+2}{z}$ and C is the semi circle $z = 2e^{i\theta}$, $(0 \le \theta \le \pi)$, then evaluate $\int_C f(z) dz$.
- (h) Find all values of z such that $e^z = -2$.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) State and prove Cauchy-Riemann equations of an analytic function in polar form.
 - (b) Suppose that f(z) = u(x, y) + iv(x, y), (z = x + iy) and $z_0 = x_0 + iy_0, w_0 = u_0 + iv_0$, then prove that if $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$ then $\lim_{z\to z_0} f(z) = w_0 \text{ and conversely.}$

(c) If the function f(z) = u(x, y) + iv(x, y) is defined by means of the equation

$$f(z) = \begin{cases} \frac{\overline{z}^e}{z}, & \text{when } z \neq 0 \\ 0, & \text{when } z = 0, \end{cases}$$

then prove that its real and imaginary parts satisfies Cauchy-Riemann equations at z=0. Also show that f'(0) fails to exist.

- (d) If the function f(z) = u(x, y) + iv(x, y) and its conjugate $\bar{f}(z) = u(x, y) iv(x, y)$ are both analytic in a domain D, then show that f(z) must be constant throughout D.
- (e) If f be analytic everywhere inside and on a simply closed contour C, taken in the positive sense and z_0 is any point interior to C, then prove that

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$

(f) State and prove Liouville's theorem.

(g) Suppose that a function f is analytic throughout a disc $|z-z_0| < R_0$ centred at z_0 and with radius R_0 . Then prove that f(z) has the power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad (|z - z_0| < R_0)$$

where
$$a_n = \frac{f^n(z_0)}{|n|}$$
, $(n = 0, 1, 2,)$

(h) State and prove Laurent's theorem.

3 (Sem-6/CBCS) MAT HC 2

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-6026

(Partial Differential Equations)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer any seven:

 $1 \times 7 = 7$

- (i) The equation of the form $P_p + Q_q = \mathbb{R}$ is known as
 - (a) Charpit's equation
 - (b) Lagrange's equation
 - (c) Bernoulli's equation
 - (d) Clairaut's equation (Choose the correct answer)

- (ii) How many minimum no. of independent variables does a partial differential equation require?
 - (iii) Find the degree and order of the equation

$$\frac{\partial^3 z}{\partial x^3} + \left(\frac{\partial^3 z}{\partial x \partial y^2}\right)^2 + \frac{\partial z}{\partial y} = \sin(x + 2y)$$

- (iv) Which method can be used for finding the complete solution of a non-linear partial differential equation of first order
 - (a) Jacobi method
 - (b) Charpit's method
 - (c) Both (a) and (b)
 - (d) None of the above

 (Choose the correct answer)
- (v) State True Or False:

The equation

$$u_{xx} + u_{yy} + u_{zz} = 0$$

is an Hyperbolic equation.

(vi) Fill in the blanks:

$$\left(\frac{\partial z}{\partial x}\right)^2 + 2\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + z = 0$$

is a _____ order partial differential equation.

(vii) The characteristic equation of
$$u_x + xu_y = u$$
 is

$$(a) \quad \frac{dx}{x} = \frac{dy}{y} = \frac{du}{u}$$

(b)
$$\frac{dx}{y} = \frac{dy}{x} = \frac{du}{u}$$

(c)
$$\frac{dx}{u} = \frac{dy}{x} = \frac{du}{y}$$

(d) None of the above (Choose the correct answer)

(viii) State True **Or** False $xu_x + yu_y = u^2 + x^2 \text{ is a semi-linear}$ partial differential equation.

- (x) The partial differential equation is elliptical if

$$(a) \quad B^2 - 4AC > 0$$

$$(b) \quad B^2 - 4AC \ge 0$$

$$(c) \quad B^2 - 4AC \le 0$$

$$(d) \quad B^2 - 4AC < 0$$

(Choose the correct answer)

- (i) Define quasi-linear partial differential equation and give one example.
- (ii) Show that a family of spheres $(x-a)^2 + (y-b)^2 = r^2$ satisfies the partial differential equation $z^2 (p^2 + q^2 + 1) = r^2$
- (iii) Eliminate the constants a and b from z = (x+a)(y+b).
- (iv) Determine whether the given equation is hyperbolic, parabolic or elliptic $u_{xx} 2u_{yy} = 0$.
- (v) Solve the differential equation p+q=1.
- (vi) Explain the essential features of the "Method of separation of variables".
- (vii) Mention when Charpit's method is used. Name a disadvantage of Charpit's method.
- (viii) What is the classification of the equation

4

$$u_{xx} - 4u_{xy} + 4u_{yy} = e^y$$

3. Solve any three: 5×3=15

- (i) Form a partial differential equation by eliminating arbitrary functions f and F from y = f(x-at) + F(x+at).
- (ii) Solve $y^2p xyq = x(z 2y)$
- (iii) Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x+y=0, z=1.
- (iv) Find the solution of the equation z = pqwhich passes through the parabola x = 0, $y^2 = z$.
- (v) Find a complete integral of the equation $x^2p^2 + y^2q^2 = 1.$
- (vi) Reduce the equation $yu_x + u_y = x$ to canonical form and obtain the general solution.

- (vii) Apply the method of separation of variables u(x, y) = f(x) g(y) to solve the equation $u_x + u = u_y$, $u(x, 0) = 4e^{-3x}$.
 - (viii) Determine the general solution of $4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2$.
- 4. Answer any three:

10×3=30

- (i) Solve $(p^2 + q^2)y qz = 0$ by Jacobi method.
- (ii) Solve $z^2 = pqxy$ by Charpit's method.
- (iii) Find the general solution of the differential equation

$$x^{2} \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = (x + y)z$$

(iv) Solve

$$(mz-ny)p+(nx-lz)q=ly-mx$$

(v) Use $v = \ln u$ and v = f(x) + g(y) to solve the equation

$$x^2 u_x^2 + y^2 u_y^2 = u^2.$$

- (vi) Find the solution of the equation $z = \frac{1}{2} (p^2 + q^2) + (p x)(q y)$ which passes through the x axis.
- (vii) Find the canonical form of the equation $y^2 u_{xx} x^2 u_{yy} = 0.$
- (viii) Classify the second order linear partial differential equation with example.