bleft sidele bus 13 (Sem-6/CBCS) PHY HC 1

2022 PHYSICS

(Honours)

Paper: PHY-HC-6016

(Electromagnetic Theory)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any seven questions: $1 \times 7 = 7$
 - (a) What is a plane wave?
 - (b) Why cannot a plane wave propagate in a conducting medium without attenuation?
 - (c) What do you mean by scaler potential?

- (d) In propagation of EM wave the relation between wave vector and electric field intensity is given as $\vec{k} \cdot \vec{E} = 0$. What does this equation signify?
 - (e) How are refractive index, magnetic permeability and electric permittivity related?
 - (f) What is polarizing angle?
 - (g) Define reflection co-efficient.
 - (h) What do you mean by anisotropic medium?
 - (i) What is a wave guide?
 - (j) Draw the path of light through graded index fibre.

- 2. Answer any four of the following questions:

 2×4=8
 - (a) We know that intensity of a light source is given by $1.33 \times 10^{-3} E_0^2$ where E_0 is electric field intensity. Also intensity of the source is power per unit area. What is the electric field intensity of a laser beam of 10^5 watt with beam cross-sectional area 10^{-6} square cm?
 - (b) What is the physical significance of displacement current?
 - (c) When a plane polarised EM wave is incident on the interface of two dielectrics, which components of \vec{E} and \vec{D} and also \vec{B} and \vec{H} are continuous?

- (d) What is evanescent wave?
 - (e) What is the function of a half-wave plate?
 - (f) Give one example each of uniaxial and biaxial crystals.
- (g) What do you mean by specific rotation of a liquid?
- mode and multiple mode fibres.
- 3. Answer any three of the following questions: 5×3=15
- (a) State the four Maxwell's equations and write their physical significances.
 - (b) Construct the electromagnetic wave equation in free space. What is its velocity?

- (c) Show that for a plane wave in conducting medium propagation vector is complex.
 - (d) How will you use Babinet compensator to analyse polarization of light?
- (e) What are transverse electric and transverse magnetic modes of EM wave in a waveguide?
 - (f) Derive an expression of numerical aperture for an optical fibre.
 - (g) Define optic axis in terms of wave surface.
 - (h) Derive an expression for plasma frequency.
- 4. Answer any three of the following questions: 10×3=30
 - (a) Defining Poynting vector. Establish the fact that the rate of decrease of total energy is equal to joule loss plus the net flow out of the surface enclosing the volume.

- (b) What are gauge transformations? Find the conditions of Lorentz gauge and Coulomb gauge. 2+(6+2)=10
- (c) Derive Fresnel's relation for EM wave with \vec{E} perpendicular to the plane of incidence with proper diagram.
- power which is transmitted when a plane wave with frequency 10 GHz is incident onto a slab of thickness 8 mm and dielectric constant 2.5.
- (e) Using Fresnel's relation, discuss the phenomenon of total internal reflection for electric vector polarised perpendicular to plane of incidence.

 What is skin depth? Derive its appreciate expression for a conducting medium.

6

6+1+3=10

- (f) How can you produce and analyse circularly and elliptically polarized lights? Explain with relevant ray diagram. (2+2+2+2)+2=10
- (g) Explain how you will measure specific rotation of a liquid by half shade polarimeter.
- (h) How will you determine the angle at which energy must be coupled into a dielectric waveguide?

3 (Sem-6/CBCS) PHY HC 2

2022

PHYSICS

(Honours)

Paper: PHY-HC-6026

(Statistical Mechanics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any seven questions from the following: 1×7=7
 - (a) What is the minimum volume of the phase cell in quantum statistics?
 - (b) What is the dimension of partition function?
 - (c) Write one limitation of Maxwell-Boltzmann statistics.
 - (d) Name the statistics where Pauli's exclusion principle is used.
 - (e) State Kirchhoff's law of heat radiation.

- (f) What is Fermi energy?
- (g) What is Chandrasekhar mass limit?
- (h) What is the absorptive power of a perfectly black body?
- (i) Write one difference between B-E and F-D statistics.
- (j) The temperature of a black body is increased from 27°C to 327°C. By how many times the emission of energy will be increased?
- 2. Answer **any four** of the following: 2×4=8
 - (a) Define microstate and macrostate.
 - (b) Define phase space and phase line.
 - (c) What is ultraviolet catastrophe?
 - (d) The wavelength of maximum emissive power of sun's heat radiation is 4750 Å. Find the surface temperature of the sun. [Wien's displacement constant = 0.2892 cm-K]
 - (e) Three particles are to be distributed in four energy levels. Calculate all possible ways of distribution when particles are
 - (i) fermions;
 - (ii) classical particles.

- (f) What is degenerate Bose gas?
- (g) What is white dwarf star?
- (h) Define ensemble.
- 3. Answer any three of the following: 5×3=15
 - (a) Write a short note on Gibbs paradox.

.37

- (b) Derive the relation S = klnW, where $S \rightarrow$ entropy, $k \rightarrow$ Boltzmann constant, $W \rightarrow$ probability.
- (c) Derive the distribution law of M-B statistics.
- (d) Derive the distribution law of F-D statistics.
- (e) Show that Fermi energy of electron gas is independent of shape and size of the material.
- (f) Derive Rayleigh-Jeans radiation law from Planck's radiation law.
- (g) Derive Sackur-Tetrode equation.
- (h) What is radiation pressure? Derive an expression of diffused radiation pressure.
- 4. Answer **any three** questions of the following: 10×3=30
 - (a) State the law of equipartition of energy and prove it. 2+8=10

110

- (b) Write Planck's quantum postulate and derive Planck's law of black-body radiation. 2+8=10
- (c) Write the differences between photon and ideal gas. Starting from B-E statistics distribution law derive Planck's law. 3+7=10
- (d) Define Stefan-Boltzmann law and deduce it from thermodynamic consideration. 3+7=10
- (e) What is electron gas? Derive the expression of energy distribution of free electrons in a metal using F–D statistics.

 2+8=10
- (f) Explain Bose-Einstein condensation.

 Define critical temperature for B-E

 condensation. 8+2=10
- (g) From Planck's law, derive
 - (i) Wien's law;
 - (ii) Stefan-Boltzmann law.

4+6=10

(h) Compare among three statistics M-B, B-E and F-D. Under what condition classical statistics approaches the quantum statistics?

8+2=10